Complemented subspaces of products of Banach spaces
HTML articles powered by AMS MathViewer
- by Paweł Domański and Augustyn Ortyński
- Trans. Amer. Math. Soc. 316 (1989), 215-231
- DOI: https://doi.org/10.1090/S0002-9947-1989-0937243-4
- PDF | Request permission
Abstract:
It is proved that: (i) every complemented subspace in an infinite product of ${L_1}$-predual Banach spaces $\prod \nolimits _{i \in I} {{X_i}}$ is isomorphic to $Z \times {{\mathbf {K}}^\mathfrak {m}}$, where $\dim {\mathbf {K}} = 1,\;\mathfrak {m} \leqslant \operatorname {card} I$ and $Z$ is isomorphic to a complemented subspace of $\prod \nolimits _{i \in J} {{X_i},\;J \subseteq I,\;Z}$ contains an isomorphic cop[ill] of $c_0^{\operatorname {card} J}$; (ii) every injective lcs (in particular, Fréchet) is of the form $Z \times {{\mathbf {K}}^\mathfrak {m}},\;\dim {\mathbf {K}} = 1$, where $Z$ has a fundamental family of seminorms of the cardinality $\tau$ and $Z$ contains an isomorphic copy of $l_\infty ^\mathfrak {r}$ (this is a generalization of Lindenstrauss’ theorem on injective Banach spaces); (iii) whenever $X \simeq {l_p},\;1 \leqslant p \leqslant \infty$, or $X \simeq {c_0}$, then every complemented subspace in a power ${X^\mathfrak {m}}$ ($\mathfrak {m}$ is an arbitrary cardinal number) is isomorphic to ${X^\mathfrak {r}} \times {{\mathbf {K}}^\mathfrak {s}},\;\mathfrak {r} + s \leqslant \mathfrak {m}$ (a generalization of the results due to Lindenstrauss and Pełczyński for $\mathfrak {m} = 1$).References
- Steven F. Bellenot and Ed Dubinsky, Fréchet spaces with nuclear Köthe quotients, Trans. Amer. Math. Soc. 273 (1982), no. 2, 579–594. MR 667161, DOI 10.1090/S0002-9947-1982-0667161-4
- M. De Wilde, Sur le relèvement des parties bornées d’un quotient d’espaces vectoriels topologiques, Bull. Soc. Roy. Sci. Liège 43 (1974), 299–301 (French, with English summary). MR 355513
- Joseph Diestel and Robert H. Lohman, Applications of mapping theorems to Schwartz spaces and projections, Michigan Math. J. 20 (1973), 39–44. MR 316993
- PawełDomański, On the separable topological vector spaces, Funct. Approx. Comment. Math. 14 (1984), 117–122. MR 817350
- PawełDomański, Twisted sums of Banach and nuclear spaces, Proc. Amer. Math. Soc. 97 (1986), no. 2, 237–243. MR 835872, DOI 10.1090/S0002-9939-1986-0835872-2
- L. Drewnowski, Another note on Kalton’s theorems, Studia Math. 52 (1974/75), 233–237. MR 360986, DOI 10.4064/sm-52-3-233-237
- Ryszard Engelking, Topologia ogólna, Biblioteka Matematyczna [Mathematics Library], vol. 47, Państwowe Wydawnictwo Naukowe (PWN), Warsaw, 1975 (Polish). MR 0500779 M. G. Garnir, M. DeWilde and J. Schmets, Analyse fonctionnelle, Birkhäuser-Verlag, Basel and Stuttgart, 1968.
- Alexandre Grothendieck, Sur les espaces ($F$) et ($DF$), Summa Brasil. Math. 3 (1954), 57–123 (French). MR 75542
- Heinz Junek, Locally convex spaces and operator ideals, Teubner-Texte zur Mathematik [Teubner Texts in Mathematics], vol. 56, BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1983. With German, French and Russian summaries. MR 758254 G. Köthe, Topological vector spaces, vol. I, Springer-Verlag, Berlin, Heildelberg and New York, 1969.
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces, Lecture Notes in Mathematics, Vol. 338, Springer-Verlag, Berlin-New York, 1973. MR 0415253 —, Classical Banach spaces, vol. I, Springer-Verlag, Berlin Heildenberg, and New York, 1977.
- Reinhold Meise and Dietmar Vogt, A characterization of the quasinormable Fréchet spaces, Math. Nachr. 122 (1985), 141–150. MR 871197, DOI 10.1002/mana.19851220114
- V. P. Palamodov, Homological methods in the theory of locally convex spaces, Uspehi Mat. Nauk 26 (1971), no. 1(157), 3–65 (Russian). MR 0293365 Open problem presented at the Ninth Seminar Poland-GDR on Operator Ideals and Geometry of Banach Spaces, Georgenthal, April 1986, communicated by A. Pietsch, Forschungsergebnisse Friedrich-Schiller Universität Jena, Jena, 1988. W. Sierpiński, Cardinal and ordinal numbers, Monogr. Mat. 34, PWN, Warsaw, 1958.
- Dietmar Vogt, Some results on continuous linear maps between Fréchet spaces, Functional analysis: surveys and recent results, III (Paderborn, 1983) North-Holland Math. Stud., vol. 90, North-Holland, Amsterdam, 1984, pp. 349–381. MR 761391, DOI 10.1016/S0304-0208(08)71485-3
- M. Zippin, The separable extension problem, Israel J. Math. 26 (1977), no. 3-4, 372–387. MR 442649, DOI 10.1007/BF03007653
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 316 (1989), 215-231
- MSC: Primary 46A05; Secondary 46A45, 46B99, 46M99
- DOI: https://doi.org/10.1090/S0002-9947-1989-0937243-4
- MathSciNet review: 937243