On a problem of S. Mazur
Author:
László Székelyhidi
Journal:
Trans. Amer. Math. Soc. 316 (1989), 161-164
MSC:
Primary 22B05; Secondary 46E99
DOI:
https://doi.org/10.1090/S0002-9947-1989-0937881-9
MathSciNet review:
937881
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In this work a generalization of Mazur’s problem concerning the continuity of linear functionals is given.
- D. Ž. Djoković, A representation theorem for $(X_{1}-1)(X_{2} -1)\cdots (X_{n}-1)$ and its applications, Ann. Polon. Math. 22 (1969/70), 189–198. MR 265798, DOI https://doi.org/10.4064/ap-22-2-189-198 R. Ger, Mazur’s criterion for continuity of convex functionals, Talk given at the 25th ISFE in Hamburg-Rissen, 1987.
- Iwo Labuda and R. Daniel Mauldin, Problem $24$ of the “Scottish book” concerning additive functionals, Colloq. Math. 48 (1984), no. 1, 89–91. MR 750758, DOI https://doi.org/10.4064/cm-48-1-89-91
- Z. Lipecki, On continuity of group homomorphisms, Colloq. Math. 48 (1984), no. 1, 93–94. MR 750759, DOI https://doi.org/10.4064/cm-48-1-93-94
- L. Székelyhidi, Regularity properties of polynomials on groups, Acta Math. Hungar. 45 (1985), no. 1-2, 15–19. MR 779512, DOI https://doi.org/10.1007/BF01955017
- L. Székelyhidi, Regularity properties of polynomials on groups, Acta Math. Hungar. 45 (1985), no. 1-2, 15–19. MR 779512, DOI https://doi.org/10.1007/BF01955017 The Scottish book, Boston, Mass., 1981.
Retrieve articles in Transactions of the American Mathematical Society with MSC: 22B05, 46E99
Retrieve articles in all journals with MSC: 22B05, 46E99
Additional Information
Article copyright:
© Copyright 1989
American Mathematical Society