Some explicit cases of the Selberg trace formula for vector valued functions
HTML articles powered by AMS MathViewer
- by Jeffrey Stopple
- Trans. Amer. Math. Soc. 316 (1989), 281-293
- DOI: https://doi.org/10.1090/S0002-9947-1989-0939806-9
- PDF | Request permission
Abstract:
The trace formula for $SL(2,{\mathbf {Z}})$ can be developed for vector-valued functions which satisfy an automorphic condition involving a group representation $\pi$. This paper makes this version explicit for the class of representations which can be realized as representations of the finite group $PSL(2,{\mathbf {Z}}/q)$ for some prime $q$. The body of the paper is devoted to computing, for the singular representations $\pi$, the determinant of the scattering matrix $\Phi (s,\pi )$ on which the applications depend. The first application is a version of the Roelcke-Selberg conjecture. This follows from known results once the scattering matrix is given. The study of representations of $SL(2,{\mathbf {Z}})$ in finite-dimensional vector spaces of (scalar-valued) holomorphic forms dates back to Hecke. Similar problems can be studied for vector spaces of Maass wave forms, with fixed level $q$ and eigenvalue $\lambda$. One would like to decompose the natural representation of $SL(2,{\mathbf {Z}})$ in this space, and count the multiplicities of its irreducible components. The eigenvalue estimate obtained for vector-valued forms is equivalent to an asymptotic count, as $\lambda \to \infty$, of these multiplicities.References
- Erich Hecke, Mathematische Werke, 3rd ed., Vandenhoeck & Ruprecht, Göttingen, 1983 (German). With introductory material by B. Schoeneberg, C. L. Siegel and J. Nielsen. MR 749754
- Dennis A. Hejhal, The Selberg trace formula for $\textrm {PSL}(2,\,\textbf {R})$. Vol. 2, Lecture Notes in Mathematics, vol. 1001, Springer-Verlag, Berlin, 1983. MR 711197, DOI 10.1007/BFb0061302
- Heinz Huber, Über die Darstellungen der Automorphismengruppe einer Riemannschen Fläche in den Eigenräumen des Laplace-Operators, Comment. Math. Helv. 52 (1977), no. 2, 177–184 (German). MR 492233, DOI 10.1007/BF02567363
- H. D. Kloosterman, The behaviour of general theta functions under the modular group and the characters of binary modular congruence groups. I, Ann. of Math. (2) 47 (1946), 317–375. MR 21032, DOI 10.2307/1969082
- Hans Maass, Über eine neue Art von nichtanalytischen automorphen Funktionen und die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen, Math. Ann. 121 (1949), 141–183 (German). MR 31519, DOI 10.1007/BF01329622 I. Piatetskii-Shapiro, Complex representations of $GL(2,K)$ for finite fields $K$, Contemp. Math., vol. 16, Amer. Math. Soc., Providence, R.I., 1980.
- Karl Prachar, Primzahlverteilung, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1957 (German). MR 0087685
- Burton Randol, A remark on the multiplicity of the discrete spectrum of congruence groups, Proc. Amer. Math. Soc. 81 (1981), no. 2, 339–340. MR 593486, DOI 10.1090/S0002-9939-1981-0593486-1
- A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. (N.S.) 20 (1956), 47–87. MR 88511
- Jean-Pierre Serre, Linear representations of finite groups, Graduate Texts in Mathematics, Vol. 42, Springer-Verlag, New York-Heidelberg, 1977. Translated from the second French edition by Leonard L. Scott. MR 0450380 J. Stopple, A functional equation for some Selberg zeta functions, Ph.D. dissertation, Univ. of California, San Diego, 1986.
- Jeffrey Stopple, Selberg zeta functions with virtual characters and the class number, Acta Arith. 54 (1989), no. 1, 37–42. MR 1024415, DOI 10.4064/aa-54-1-37-42
- Shun’ichi Tanaka, Construction and classification of irreducible representations of special linear group of the second order over a finite field, Osaka Math. J. 4 (1967), 65–84. MR 219635
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 316 (1989), 281-293
- MSC: Primary 11F72
- DOI: https://doi.org/10.1090/S0002-9947-1989-0939806-9
- MathSciNet review: 939806