On the dissipative evolution equations associated with the Zakharov-Shabat system with a quadratic spectral parameter
HTML articles powered by AMS MathViewer
- by Jyh-Hao Lee
- Trans. Amer. Math. Soc. 316 (1989), 327-336
- DOI: https://doi.org/10.1090/S0002-9947-1989-0943304-6
- PDF | Request permission
Abstract:
In this paper we derive some results for the Zakharov-Shabat system of the form $dm/dx = {z^2}[J,m] + (zQ + P)m$; $J$ is diagonal and skew-Hermitian $[8,10,12]$. Following the idea of R. Beals and R. R. Coifman, we estimate the wedge products of the columns of $m$ by ${L^2}$-norm of the potential $(Q,P) [4]$. By this result we have the global existence of the dissipative evolution equations associated with this spectral problem if the generic initial data $(Q(x,0), P(x,0)) = ({Q_0},{P_0})$ is of Schwartz class.References
- R. Beals and R. Coifman, Scattering, transformations spectrales et équations d’évolution non linéaires, Goulaouic-Meyer-Schwartz Seminar, 1980–1981, École Polytech., Palaiseau, 1981, pp. Exp. No. XXII, 10 (French). MR 657992
- R. Beals and R. R. Coifman, Scattering and inverse scattering for first order systems, Comm. Pure Appl. Math. 37 (1984), no. 1, 39–90. MR 728266, DOI 10.1002/cpa.3160370105
- R. Beals and R. R. Coifman, Inverse scattering and evolution equations, Comm. Pure Appl. Math. 38 (1985), no. 1, 29–42. MR 768103, DOI 10.1002/cpa.3160380103
- Richard Beals and R. R. Coifman, Scattering and inverse scattering for first-order systems. II, Inverse Problems 3 (1987), no. 4, 577–593. MR 928046
- Robin K. Bullough and Philip J. Caudrey (eds.), Solitons, Topics in Current Physics, vol. 17, Springer-Verlag, Berlin-New York, 1980. MR 625877 V. S. Gerezhikov et al., Quadratic bundle and nonlinear equations, Theoret. and Math. Phys. 44 (3) (1980), 784-795.
- David J. Kaup and Alan C. Newell, An exact solution for a derivative nonlinear Schrödinger equation, J. Mathematical Phys. 19 (1978), no. 4, 798–801. MR 464963, DOI 10.1063/1.523737 J. H. Lee, Analytic properties of Zakharov-Shabat inverse scattering problem with polynomial spectral dependence of degree $1$ in the potential, Ph.D. Dissertation, Yale Univ., May 1983.
- Jyh-Hao Lee, A Zakharov-Shabat inverse scattering problem and the associated evolution equations, Chinese J. Math. 12 (1984), no. 4, 223–233. MR 774286
- Jyh-Hao Lee, Analytic properties of a Zakharov-Shabat inverse scattering problem. I, Chinese J. Math. 14 (1986), no. 4, 225–248. MR 884757
- Jyh-Hao Lee, Global solvability of the derivative nonlinear Schrödinger equation, Trans. Amer. Math. Soc. 314 (1989), no. 1, 107–118. MR 951890, DOI 10.1090/S0002-9947-1989-0951890-5 —, Analytic properties of a Zakharov-Shabat inverse scattering problem (II), preprint.
- Koji Mio, Tatsuki Ogino, Kazuo Minami, and Susumu Takeda, Modified nonlinear Schrödinger equation for Alfvén waves propagating along the magnetic field in cold plasmas, J. Phys. Soc. Japan 41 (1976), no. 1, 265–271. MR 462141, DOI 10.1143/JPSJ.41.265 E. Mjølhus, On the modulational instability of hydromagnetic waves parallel to the magnetic field, J. Plasma Phys. 16 (1976), 321-334.
- H. C. Morris and R. K. Dodd, The two-component derivative nonlinear Schrödinger equation, Phys. Scripta 20 (1979), no. 3-4, 505–508. Special issue on solitons in physics. MR 544496, DOI 10.1088/0031-8949/20/3-4/029
- J. M. Alberty, T. Koikawa, and R. Sasaki, Canonical structure of soliton equations. I, Phys. D 5 (1982), no. 1, 43–65. MR 666528, DOI 10.1016/0167-2789(82)90049-5
- V. E. Zakharov and A. B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Ž. Èksper. Teoret. Fiz. 61 (1971), no. 1, 118–134 (Russian, with English summary); English transl., Soviet Physics JETP 34 (1972), no. 1, 62–69. MR 0406174
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 316 (1989), 327-336
- MSC: Primary 35Q20; Secondary 34A55, 34B25
- DOI: https://doi.org/10.1090/S0002-9947-1989-0943304-6
- MathSciNet review: 943304