On the variety of plane curves of degree $d$ with $\delta$ nodes and $\kappa$ cusps
HTML articles powered by AMS MathViewer
- by Pyung-Lyun Kang
- Trans. Amer. Math. Soc. 316 (1989), 165-192
- DOI: https://doi.org/10.1090/S0002-9947-1989-1014468-3
- PDF | Request permission
Abstract:
Let ${{\mathbf {P}}^N}$ be the projective space which parametrizes all plane curves of degree $d$ and $V(d,\delta ,\kappa )$ the subvariety of ${{\mathbf {P}}^N}$ consisting of all reduced and irreducible plane curves of degree $d$ with $\delta$ nodes and $\kappa$ cusps as their only singularities. In this paper we prove that $V(d,\delta ,\kappa )$ is irreducible if $\kappa \leqslant 3$, except possibly when $\kappa = 3$ and $d = 5$ or $6$.References
- E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, Geometry of algebraic curves. Vol. I, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 267, Springer-Verlag, New York, 1985. MR 770932, DOI 10.1007/978-1-4757-5323-3
- Steven Diaz and Joe Harris, Ideals associated to deformations of singular plane curves, Trans. Amer. Math. Soc. 309 (1988), no. 2, 433–468. MR 961600, DOI 10.1090/S0002-9947-1988-0961600-2
- Steven Diaz and Joe Harris, Geometry of the Severi variety, Trans. Amer. Math. Soc. 309 (1988), no. 1, 1–34. MR 957060, DOI 10.1090/S0002-9947-1988-0957060-8
- D. Eisenbud and J. Harris, Divisors on general curves and cuspidal rational curves, Invent. Math. 74 (1983), no. 3, 371–418. MR 724011, DOI 10.1007/BF01394242
- Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York, 1978. MR 507725
- Joe Harris, On the Severi problem, Invent. Math. 84 (1986), no. 3, 445–461. MR 837522, DOI 10.1007/BF01388741
- Joe Harris, Curves and their moduli, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, 1987, pp. 99–143. MR 927953, DOI 10.1090/pspum/046.1/927953
- Joe Harris, The genus of space curves, Math. Ann. 249 (1980), no. 3, 191–204. MR 579101, DOI 10.1007/BF01363895
- Joe Harris, Families of smooth curves, Duke Math. J. 51 (1984), no. 2, 409–419. MR 747873, DOI 10.1215/S0012-7094-84-05120-2
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157, DOI 10.1007/978-1-4757-3849-0
- Oscar Zariski, Algebraic surfaces, Second supplemented edition, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 61, Springer-Verlag, New York-Heidelberg, 1971. With appendices by S. S. Abhyankar, J. Lipman, and D. Mumford. MR 0469915
- Oscar Zariski, Dimension-theoretic characterization of maximal irreducible algebraic systems of plane nodal curves of a given order $n$ and with a given number $d$ of nodes, Amer. J. Math. 104 (1982), no. 1, 209–226. MR 648487, DOI 10.2307/2374074
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 316 (1989), 165-192
- MSC: Primary 14H10; Secondary 14H20
- DOI: https://doi.org/10.1090/S0002-9947-1989-1014468-3
- MathSciNet review: 1014468