On the Kummer congruences and the stable homotopy of $B$U
HTML articles powered by AMS MathViewer
- by Andrew Baker, Francis Clarke, Nigel Ray and Lionel Schwartz
- Trans. Amer. Math. Soc. 316 (1989), 385-432
- DOI: https://doi.org/10.1090/S0002-9947-1989-0942424-X
- PDF | Request permission
Abstract:
We study the torsion-free part of the stable homotopy groups of the space $BU$, by considering upper and lower bounds. The upper bound is furnished by the ring $P{K_{\ast }}(BU)$ of coaction primitives into which $\pi _{\ast }^S(BU)$ is mapped by the complex $K$-theoretic Hurewicz homomorphism \[ \pi _{\ast }^S(BU) \to P{K_{\ast }}(BU).\] We characterize $P{K_{\ast }}(BU)$ in terms of symmetric numerical polynomials and describe systematic families of elements by utilizing the classical Kummer congruences among the Bernoulli numbers. For a lower bound we choose the ring of those framed bordism classes which may be represented by singular hypersurfaces in $BU$. From among these we define families of classes constructed from regular neighborhoods of embeddings of iterated Thom complexes in Euclidean space. Employing techniques of duality theory, we deduce that these two families correspond, except possibly in the lowest dimensions, under the Hurewicz homomorphism, which thus provides a link between the algebra and the geometry. In the course of this work we greatly extend certain $e$-invariant calculations of J. F. Adams.References
- J. F. Adams, On the groups $J(X)$. II, Topology 3 (1965), 137–171. MR 198468, DOI 10.1016/0040-9383(65)90040-6
- J. F. Adams, On the groups $J(X)$. IV, Topology 5 (1966), 21–71. MR 198470, DOI 10.1016/0040-9383(66)90004-8
- J. F. Adams, Lectures on generalised cohomology, Category Theory, Homology Theory and their Applications, III (Battelle Institute Conference, Seattle, Wash., 1968, Vol. Three), Springer, Berlin, 1969, pp. 1–138. MR 0251716
- J. F. Adams, Stable homotopy and generalised homology, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, Ill.-London, 1974. MR 0402720
- J. F. Adams, A. S. Harris, and R. M. Switzer, Hopf algebras of cooperations for real and complex $K$-theory, Proc. London Math. Soc. (3) 23 (1971), 385–408. MR 293617, DOI 10.1112/plms/s3-23.3.385
- J. F. Adams and F. W. Clarke, Stable operations on complex $K$-theory, Illinois J. Math. 21 (1977), no. 4, 826–829. MR 454977, DOI 10.1215/ijm/1256048931
- Michael F. Atiyah and Friedrich Hirzebruch, Quelques théorèmes de non-plongement pour les variétés différentiables, Bull. Soc. Math. France 87 (1959), 383–396 (French). MR 114231, DOI 10.24033/bsmf.1533 —, Vector fields on homogeneous spaces, Proc. Sympos. Pure Math., vol. 3, Differential Geometry, Amer. Math. Soc., Providence, R.I., 1961, pp. 7-38.
- Andrew Baker, Combinatorial and arithmetic identities based on formal group laws, Algebraic topology, Barcelona, 1986, Lecture Notes in Math., vol. 1298, Springer, Berlin, 1987, pp. 17–34. MR 928821, DOI 10.1007/BFb0082998
- Andrew Baker and Nigel Ray, Some infinite families of $\textrm {U}$-hypersurfaces, Math. Scand. 50 (1982), no. 2, 149–166. MR 672922, DOI 10.7146/math.scand.a-11952
- C. Berge, Principles of combinatorics, Mathematics in Science and Engineering, Vol. 72, Academic Press, New York-London, 1971. Translated from the French. MR 0270922 J. M. Boardman, Stable and unstable objects for $BP$-cohomology, preprint, Johns Hopkins, 1986.
- A. I. Borevich and I. R. Shafarevich, Number theory, Pure and Applied Mathematics, Vol. 20, Academic Press, New York-London, 1966. Translated from the Russian by Newcomb Greenleaf. MR 0195803
- N. Bourbaki, Éléments de mathématique. Fasc. XXXVIII: Groupes et algèbres de Lie. Chapitre VII: Sous-algèbres de Cartan, éléments réguliers. Chapitre VIII: Algèbres de Lie semi-simples déployées, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1364, Hermann, Paris, 1975 (French). MR 0453824
- Francis Clarke, Self-maps of $B\textrm {U}$, Math. Proc. Cambridge Philos. Soc. 89 (1981), no. 3, 491–500. MR 602302, DOI 10.1017/S0305004100058382
- George Cooke, Embedding certain complexes up to homotopy type in euclidean space, Ann. of Math. (2) 90 (1969), 144–156. MR 242152, DOI 10.2307/1970685
- M. C. Crabb and K. Knapp, Vector bundles of maximal codegree, Math. Z. 193 (1986), no. 2, 285–296. MR 856156, DOI 10.1007/BF01174338
- Albrecht Dold and Dieter Puppe, Duality, trace, and transfer, Proceedings of the International Conference on Geometric Topology (Warsaw, 1978) PWN, Warsaw, 1980, pp. 81–102. MR 656721 K. S. Felali, Intersection points of immersed manifolds, Thesis, Univ. of Manchester, 1982.
- Vincent Franjou, Quelques éléments dans l’homotopie stable du groupe unitaire, Bull. Soc. Math. France 115 (1987), no. 3, 309–328 (French, with English summary). MR 926531, DOI 10.24033/bsmf.2080
- Brayton Gray, On the sphere of origin of infinite families in the homotopy groups of spheres, Topology 8 (1969), 219–232. MR 245008, DOI 10.1016/0040-9383(69)90012-3
- Morris W. Hirsch and Barry Mazur, Smoothings of piecewise linear manifolds, Annals of Mathematics Studies, No. 80, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. MR 0415630
- J. R. Hubbuck, Stable homotopy invariant non embedding theorems in Euclidean space, Bol. Soc. Brasil. Mat. 5 (1974), no. 2, 195–205. MR 425988, DOI 10.1007/BF02938491
- J. F. P. Hudson, Piecewise linear topology, W. A. Benjamin, Inc., New York-Amsterdam, 1969. University of Chicago Lecture Notes prepared with the assistance of J. L. Shaneson and J. Lees. MR 0248844
- James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New York-Berlin, 1972. MR 0323842, DOI 10.1007/978-1-4612-6398-2
- Dale Husemoller, Fibre bundles, 2nd ed., Graduate Texts in Mathematics, No. 20, Springer-Verlag, New York-Heidelberg, 1975. MR 0370578
- Keith Johnson, The action of the stable operations of complex $K$-theory on coefficient groups, Illinois J. Math. 28 (1984), no. 1, 57–63. MR 730711
- Nicholas M. Katz, $p$-adic $L$-functions for CM fields, Invent. Math. 49 (1978), no. 3, 199–297. MR 513095, DOI 10.1007/BF01390187 K. Knapp, Some applications of $K$-theory to framed bordism: $e$-invariant and transfer, Habilitationsschrift, Bonn, 1979.
- Neal Koblitz, $p$-adic numbers, $p$-adic analysis, and zeta-functions, Graduate Texts in Mathematics, Vol. 58, Springer-Verlag, New York-Heidelberg, 1977. MR 0466081, DOI 10.1007/978-1-4684-0047-2
- Tomio Kubota and Heinrich-Wolfgang Leopoldt, Eine $p$-adische Theorie der Zetawerte. I. Einführung der $p$-adischen Dirichletschen $L$-Funktionen, J. Reine Angew. Math. 214(215) (1964), 328–339 (German). MR 163900 E. E. Kummer, Über eine allgemeine Eigenschaft der rationalen Entwicklungscoefficienten einer bestimmten Gattung analytischer Functionen, J. Riene Angew. Math. 41 (1851), 368-372; also in Collected Papers, vol. I, Springer-Verlag, Berlin, Heidelberg, New York, 1975.
- Mark Mahowald and Nigel Ray, A note on the Thom isomorphism, Proc. Amer. Math. Soc. 82 (1981), no. 2, 307–308. MR 609673, DOI 10.1090/S0002-9939-1981-0609673-X J. P. May, The homology of ${E_\infty }$ ring spaces, Lecture Notes in Math., vol. 533, Springer-Verlag, Berlin, 1976, pp. 69-206.
- Haynes Miller, Universal Bernoulli numbers and the $S^{1}$-transfer, Current trends in algebraic topology, Part 2 (London, Ont., 1981) CMS Conf. Proc., vol. 2, Amer. Math. Soc., Providence, RI, 1982, pp. 437–449. MR 686158
- Robert E. Mosher, Some stable homotopy of complex projective space, Topology 7 (1968), 179–193. MR 227985, DOI 10.1016/0040-9383(68)90026-8
- Amiya Mukherjee, Embedding complex projective spaces in Euclidean space, Bull. London Math. Soc. 13 (1981), no. 4, 323–324. MR 620045, DOI 10.1112/blms/13.4.323 J. A. Murdock, Generalised $e$-invariants and the Chern character, J. London Math. Soc. 71 (1972), 283-300.
- Serge Ochanine and Lionel Schwartz, Une remarque sur les générateurs du cobordisme complexe, Math. Z. 190 (1985), no. 4, 543–557 (French). MR 808921, DOI 10.1007/BF01214753 M. D. Peim, The homotopy and $K$-theory of $\Omega \Sigma BU$, Thesis, University of Manchester, 1988.
- Douglas C. Ravenel and W. Stephen Wilson, The Hopf ring for complex cobordism, J. Pure Appl. Algebra 9 (1976/77), no. 3, 241–280. MR 448337, DOI 10.1016/0022-4049(77)90070-6
- Nigel Ray, Extensions of umbral calculus: penumbral coalgebras and generalised Bernoulli numbers, Adv. in Math. 61 (1986), no. 1, 49–100. MR 847728, DOI 10.1016/0001-8708(86)90065-4
- Nigel Ray, Symbolic calculus: a 19th century approach to $M\textrm {U}$ and BP, Homotopy theory (Durham, 1985) London Math. Soc. Lecture Note Ser., vol. 117, Cambridge Univ. Press, Cambridge, 1987, pp. 195–238. MR 932265
- Nigel Ray and Lionel Schwartz, Construction d’éléments dans $\pi _\ast ^s(B\textrm {U}(2))$, Bull. Soc. Math. France 111 (1983), no. 4, 449–465 (French, with English summary). MR 763554
- Elmer Rees, Framings on hypersurfaces, J. London Math. Soc. (2) 22 (1980), no. 1, 161–167. MR 579820, DOI 10.1112/jlms/s2-22.1.161 L. Schwartz, Opérations d’Adams en $K$-homologie et applications, Bull. Soc. Math. France 109 (1981), 237-257. —, $K$-théorie et homotopie stable, Thesis, Université de Paris-VII, 1983.
- Lionel Schwartz, $K$-théorie des corps finis et homotopie stable du classifiant d’un groupe de Lie, Proceedings of the Luminy conference on algebraic $K$-theory (Luminy, 1983), 1984, pp. 291–300. MR 772064, DOI 10.1016/0022-4049(84)90042-2
- Victor P. Snaith, Algebraic cobordism and $K$-theory, Mem. Amer. Math. Soc. 21 (1979), no. 221, vii+152. MR 539791, DOI 10.1090/memo/0221 J. Stallings, The embedding of homotopy types into manifolds, mimeo notes, Princeton University, Princeton, N.J., 1965. K. G. C. von Staudt, De numeris Bernoullianis—commentatio altera, Erlangen, 1845.
- Robert M. Switzer, Algebraic topology—homotopy and homology, Die Grundlehren der mathematischen Wissenschaften, Band 212, Springer-Verlag, New York-Heidelberg, 1975. MR 0385836, DOI 10.1007/978-3-642-61923-6
- George W. Whitehead, Elements of homotopy theory, Graduate Texts in Mathematics, vol. 61, Springer-Verlag, New York-Berlin, 1978. MR 516508, DOI 10.1007/978-1-4612-6318-0
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 316 (1989), 385-432
- MSC: Primary 55N15; Secondary 55Q10, 55Q50
- DOI: https://doi.org/10.1090/S0002-9947-1989-0942424-X
- MathSciNet review: 942424