Interpolation between Sobolev and between Lipschitz spaces of analytic functions on starshaped domains
HTML articles powered by AMS MathViewer
- by Emil J. Straube
- Trans. Amer. Math. Soc. 316 (1989), 653-671
- DOI: https://doi.org/10.1090/S0002-9947-1989-0943308-3
- PDF | Request permission
Abstract:
We show that on a starshaped domain $\Omega$ in ${\operatorname {C} ^n}$ (actually on a somewhat larger, biholomorphically invariant class) the ${\mathcal {L}^p}$-Sobolev spaces of analytic functions form an interpolation scale for both the real and complex methods, for each $p,\;0 < p \leqslant \infty$. The case $p = \infty$ gives the Lipschitz scale; here the functor ${(,)^{[\theta ]}}$ has to be considered (rather than ${(,)_{[\theta ]}}$).References
- David E. Barrett, Regularity of the Bergman projection and local geometry of domains, Duke Math. J. 53 (1986), no. 2, 333–343. MR 850539, DOI 10.1215/S0012-7094-86-05321-4
- R. P. Boas Jr., Inequalities for monotonic series, J. Math. Anal. Appl. 1 (1960), 121–126. MR 117465, DOI 10.1016/0022-247X(60)90032-9
- Frank Beatrous Jr., Estimates for derivatives of holomorphic functions in pseudoconvex domains, Math. Z. 191 (1986), no. 1, 91–116. MR 812605, DOI 10.1007/BF01163612 J. Bergh and J. Löfström, Interpolation spaces, Grundlehren Math. Wiss., vol. 223, Springer, Berlin, 1976.
- Paul L. Butzer and Hubert Berens, Semi-groups of operators and approximation, Die Grundlehren der mathematischen Wissenschaften, Band 145, Springer-Verlag New York, Inc., New York, 1967. MR 0230022
- Ronald R. Coifman and Guido Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), no. 4, 569–645. MR 447954, DOI 10.1090/S0002-9904-1977-14325-5
- Jacqueline Détraz, Classes de Bergman de fonctions harmoniques, Bull. Soc. Math. France 109 (1981), no. 2, 259–268 (French, with English summary). MR 623793
- Björn E. J. Dahlberg, On the Poisson integral for Lipschitz and $C^{1}$-domains, Studia Math. 66 (1979), no. 1, 13–24. MR 562447, DOI 10.4064/sm-66-1-13-24
- Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
- C. Fefferman and E. M. Stein, $H^{p}$ spaces of several variables, Acta Math. 129 (1972), no. 3-4, 137–193. MR 447953, DOI 10.1007/BF02392215
- John B. Garnett, Bounded analytic functions, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR 628971
- Peter Henrici, Applied and computational complex analysis. Vol. 2, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1977. Special functions—integral transforms—asymptotics—continued fractions. MR 0453984
- Einar Hille and Ralph S. Phillips, Functional analysis and semi-groups, American Mathematical Society Colloquium Publications, Vol. 31, American Mathematical Society, Providence, R.I., 1957. rev. ed. MR 0089373
- Steven G. Krantz, Intrinsic Lipschitz classes on manifolds with applications to complex function theory and estimates for the $\bar \partial$ and $\bar \partial _{b}$ equations, Manuscripta Math. 24 (1978), no. 4, 351–378. MR 496755, DOI 10.1007/BF01168882
- Steven G. Krantz, Function theory of several complex variables, Pure and Applied Mathematics, John Wiley & Sons, Inc., New York, 1982. MR 635928
- S. G. Kreĭn, Yu. Ī. Petunīn, and E. M. Semënov, Interpolation of linear operators, Translations of Mathematical Monographs, vol. 54, American Mathematical Society, Providence, R.I., 1982. Translated from the Russian by J. Szűcs. MR 649411
- Ewa Ligocka, Estimates in Sobolev norms $\|\cdot \|^s_p$ for harmonic and holomorphic functions and interpolation between Sobolev and Hölder spaces of harmonic functions, Studia Math. 86 (1987), no. 3, 255–271. MR 917051, DOI 10.4064/sm-86-3-255-271
- Ewa Ligocka, On the reproducing kernel for harmonic functions and the space of Bloch harmonic functions on the unit ball in $\textbf {R}^n$, Studia Math. 87 (1987), no. 1, 23–32. MR 924758, DOI 10.4064/sm-87-1-23-32
- Vladimir G. Maz’ja, Sobolev spaces, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1985. Translated from the Russian by T. O. Shaposhnikova. MR 817985, DOI 10.1007/978-3-662-09922-3
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- H. Triebel, Interpolation theory, function spaces, differential operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978. MR 500580
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 316 (1989), 653-671
- MSC: Primary 46E15; Secondary 32A07, 46E35, 46M35
- DOI: https://doi.org/10.1090/S0002-9947-1989-0943308-3
- MathSciNet review: 943308