Isometric dilations for infinite sequences of noncommuting operators
HTML articles powered by AMS MathViewer
- by Gelu Popescu
- Trans. Amer. Math. Soc. 316 (1989), 523-536
- DOI: https://doi.org/10.1090/S0002-9947-1989-0972704-3
- PDF | Request permission
Abstract:
This paper develops a dilation theory for $\{ {T_n}\} _{n = 1}^\infty$ an infinite sequence of noncommuting operators on a Hilbert space, when the matrix $[{T_1},{T_2}, \ldots ]$ is a contraction. A Wold decomposition for an infinite sequence of isometries with orthogonal final spaces and a minimal isometric dilation for $\{ {T_n}\} _{n = 1}^\infty$ are obtained. Some theorems on the geometric structure of the space of the minimal isometric dilation and some consequences are given. This results are used to extend the Sz.-Nagy-Foiaş lifting theorem to this noncommutative setting.References
- R. G. Douglas, P. S. Muhly, and Carl Pearcy, Lifting commuting operators, Michigan Math. J. 15 (1968), 385–395. MR 236752
- Ciprian Foiaş, A remark on the universal model for contractions of G. C. Rota, Com. Acad. R. P. Romîne 13 (1963), 349–352 (Romanian, with French and Russian summaries). MR 176330
- Arthur E. Frazho, Models for noncommuting operators, J. Functional Analysis 48 (1982), no. 1, 1–11. MR 671311, DOI 10.1016/0022-1236(82)90057-X
- Arthur E. Frazho, Complements to models for noncommuting operators, J. Funct. Anal. 59 (1984), no. 3, 445–461. MR 769375, DOI 10.1016/0022-1236(84)90059-4
- Gelu Popescu, Models for infinite sequences of noncommuting operators, Acta Sci. Math. (Szeged) 53 (1989), no. 3-4, 355–368. MR 1033608
- J. J. Schäffer, On unitary dilations of contractions, Proc. Amer. Math. Soc. 6 (1955), 322. MR 68740, DOI 10.1090/S0002-9939-1955-0068740-7
- Béla Sz.-Nagy and Ciprian Foiaş, Dilatation des commutants d’opérateurs, C. R. Acad. Sci. Paris Sér. A-B 266 (1968), A493–A495 (French). MR 236755 —, Harmonic analysis on operators on Hilbert space, North-Holland, Amsterdam, 1970.
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 316 (1989), 523-536
- MSC: Primary 47A20; Secondary 47A45
- DOI: https://doi.org/10.1090/S0002-9947-1989-0972704-3
- MathSciNet review: 972704