Topological equivalence of foliations of homogeneous spaces
HTML articles powered by AMS MathViewer
- by Dave Witte
- Trans. Amer. Math. Soc. 317 (1990), 143-166
- DOI: https://doi.org/10.1090/S0002-9947-1990-0942428-5
- PDF | Request permission
Abstract:
For $i = 1,2$, let ${\Gamma _i}$ be a lattice in a connected Lie group ${G_i}$, and let ${X_i}$ be a connected Lie subgroup of ${G_i}$. The double cosets ${\Gamma _i}g{X_i}$ provide a foliation ${\mathcal {F}_i}$ of the homogeneous space ${\Gamma _i}\backslash {G_i}$. Assume that ${X_1}$ and ${X_2}$ are unimodular and that ${\mathcal {F}_1}$ has a dense leaf. If ${G_1}$ and ${G_2}$ are semisimple groups to which the Mostow Rigidity Theorem applies, or are simply connected nilpotent groups (or are certain more general solvable groups), we use an idea of D. Benardete to show that any topological equivalence of ${\mathcal {F}_1}$ and ${\mathcal {F}_2}$ must be the composition of two very elementary maps: an affine map and a map that takes each leaf to itself.References
- D. V. Anosov, Geodesic flows on closed Riemann manifolds with negative curvature. , Proceedings of the Steklov Institute of Mathematics, No. 90 (1967), American Mathematical Society, Providence, R.I., 1969. Translated from the Russian by S. Feder. MR 0242194
- Walter L. Baily Jr., Introductory lectures on automorphic forms, Kanô Memorial Lectures, No. 2, Iwanami Shoten Publishers, Tokyo; Princeton University Press, Princeton, N.J., 1973. MR 0369750
- Diego Benardete, Topological equivalence of flows on homogeneous spaces, and divergence of one-parameter subgroups of Lie groups, Trans. Amer. Math. Soc. 306 (1988), no. 2, 499–527. MR 933304, DOI 10.1090/S0002-9947-1988-0933304-3
- I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinaĭ, Ergodic theory, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 245, Springer-Verlag, New York, 1982. Translated from the Russian by A. B. Sosinskiĭ. MR 832433, DOI 10.1007/978-1-4615-6927-5
- V. V. Gorbacevič, Lattices in solvable Lie groups, and deformations of homogeneous spaces, Mat. Sb. (N.S.) 91(133) (1973), 234–252, 288 (Russian). MR 0352329
- Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, vol. 80, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 514561
- Morris W. Hirsch and Stephen Smale, Differential equations, dynamical systems, and linear algebra, Pure and Applied Mathematics, Vol. 60, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1974. MR 0486784
- Gerhard P. Hochschild, Basic theory of algebraic groups and Lie algebras, Graduate Texts in Mathematics, vol. 75, Springer-Verlag, New York-Berlin, 1981. MR 620024
- James E. Humphreys, Linear algebraic groups, Graduate Texts in Mathematics, No. 21, Springer-Verlag, New York-Heidelberg, 1975. MR 0396773
- Brian Marcus, Topological conjugacy of horocycle flows, Amer. J. Math. 105 (1983), no. 3, 623–632. MR 704217, DOI 10.2307/2374316
- Calvin C. Moore, Ergodicity of flows on homogeneous spaces, Amer. J. Math. 88 (1966), 154–178. MR 193188, DOI 10.2307/2373052
- G. D. Mostow, Strong rigidity of locally symmetric spaces, Annals of Mathematics Studies, No. 78, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1973. MR 0385004
- Gopal Prasad, Strong rigidity of $\textbf {Q}$-rank $1$ lattices, Invent. Math. 21 (1973), 255–286. MR 385005, DOI 10.1007/BF01418789
- M. S. Raghunathan, Discrete subgroups of Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68, Springer-Verlag, New York-Heidelberg, 1972. MR 0507234
- Marina Ratner, Ergodic theory in hyperbolic space, Conference in modern analysis and probability (New Haven, Conn., 1982) Contemp. Math., vol. 26, Amer. Math. Soc., Providence, RI, 1984, pp. 309–334. MR 737411, DOI 10.1090/conm/026/737411
- Masahiko Saito, Sur certains groupes de Lie résolubles. II, Sci. Papers College Gen. Ed. Univ. Tokyo 7 (1957), 157–168 (French). MR 97463
- V. S. Varadarajan, Lie groups, Lie algebras, and their representations, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1974. MR 0376938
- Robert J. Zimmer, Ergodic theory and semisimple groups, Monographs in Mathematics, vol. 81, Birkhäuser Verlag, Basel, 1984. MR 776417, DOI 10.1007/978-1-4684-9488-4
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 317 (1990), 143-166
- MSC: Primary 22E40; Secondary 57R30, 58F18
- DOI: https://doi.org/10.1090/S0002-9947-1990-0942428-5
- MathSciNet review: 942428