Almost periodic operators in $\textrm {VN}(G)$
HTML articles powered by AMS MathViewer
- by Ching Chou
- Trans. Amer. Math. Soc. 317 (1990), 229-253
- DOI: https://doi.org/10.1090/S0002-9947-1990-0943301-9
- PDF | Request permission
Abstract:
Let $G$ be a locally compact group, $A(G)$ the Fourier algebra of $G$, $B(G)$ the Fourier-Stieltjes algebra of $G$ and ${\text {VN}}(G)$ the von Neumann algebra generated by the left regular representation $\lambda$ of $G$. Then $A(G)$ is the predual of ${\text {VN}}(G)$; ${\text {VN}}(G)$ is a $B(G)$-module and $A(G)$ is a closed ideal of $B(G)$. Let ${\text {AP}}(\hat G) = \{ T \in {\text {VN}}(G):u \mapsto u \cdot T$ is a compact operator from $A(G)$ into ${\text {VN}}(G)\}$, the space of almost periodic operators in ${\text {VN}}(G)$. Let $C_\delta ^*(G)$ be the ${C^*}$-algebra generated by $\{ \lambda (x):x \in G\}$. Then $C_\delta ^*(G) \subset {\text {AP}}(\hat G)$. For a compact $G$, let $E$ be the rank one operator on ${L^2}(G)$ that sends $h \in {L^2}(G)$ to the constant function $\int {h(x)dx}$. We have the following results: (1) There exists a compact group $G$ such that $E \in \text {AP}(\hat G)\backslash C_\delta ^*(G)$. (2) For a compact Lie group $G$, $E \in {\text {AP(}}\hat G{\text {)}} \Leftrightarrow E \in C_\delta ^*(G) \Leftrightarrow {L^\infty }(G)$ has a unique left invariant mean $\Leftrightarrow G$ is semisimple. (3) If $G$ is an extension of a locally compact abelian group by an amenable discrete group then ${\text {AP}}(\hat G) = C_\delta ^*(G)$. (4) Let $G = {{\mathbf {F}}_r}$, the free group with $r$ generators, $1 < r < \infty$. If $T \in {\text {VN}}(G)$ and $u \mapsto u \cdot T$ is a compact operator from $B(G)$ into ${\text {VN}}(G)$ then $T \in C_\delta ^*(G)$.References
- Charles A. Akemann and Martin E. Walter, Unbounded negative definite functions, Canadian J. Math. 33 (1981), no. 4, 862–871. MR 634144, DOI 10.4153/CJM-1981-067-9
- Harald Bohr, Almost Periodic Functions, Chelsea Publishing Co., New York, N.Y., 1947. MR 0020163
- R. B. Burckel, Weakly almost periodic functions on semigroups, Gordon and Breach Science Publishers, New York-London-Paris, 1970. MR 0263963
- Jean De Cannière and Uffe Haagerup, Multipliers of the Fourier algebras of some simple Lie groups and their discrete subgroups, Amer. J. Math. 107 (1985), no. 2, 455–500. MR 784292, DOI 10.2307/2374423
- Ching Chou, Locally compact groups which are amenable as discrete groups, Proc. Amer. Math. Soc. 76 (1979), no. 1, 46–50. MR 534389, DOI 10.1090/S0002-9939-1979-0534389-9
- Ching Chou, Topological invariant means on the von Neumann algebra $\textrm {VN}(G)$, Trans. Amer. Math. Soc. 273 (1982), no. 1, 207–229. MR 664039, DOI 10.1090/S0002-9947-1982-0664039-7
- Ching Chou, Anthony To Ming Lau, and Joseph Rosenblatt, Approximation of compact operators by sums of translations, Illinois J. Math. 29 (1985), no. 2, 340–350. MR 784527
- Michael Cowling, Sur les coefficients des représentations unitaires des groupes de Lie simples, Analyse harmonique sur les groupes de Lie (Sém., Nancy-Strasbourg 1976–1978), II, Lecture Notes in Math., vol. 739, Springer, Berlin, 1979, pp. 132–178 (French). MR 560837 C. Delaroche and A. Kirillov, Sur les relations entre l’espace dual d’un groupe et la structure de ses sous-groupes fermés, Séminaire Bourbaki, no. 343 (1967/68).
- Jacques Dixmier, $C^*$-algebras, North-Holland Mathematical Library, Vol. 15, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. Translated from the French by Francis Jellett. MR 0458185
- V. G. Drinfel′d, Finitely-additive measures on $S^{2}$ and $S^{3}$, invariant with respect to rotations, Funktsional. Anal. i Prilozhen. 18 (1984), no. 3, 77 (Russian). MR 757256
- Charles F. Dunkl and Donald E. Ramirez, Topics in harmonic analysis, The Appleton-Century Mathematics Series, Appleton-Century-Crofts [Meredith Corporation], New York, 1971. MR 0454515
- Charles F. Dunkl and Donald E. Ramirez, $C^{\ast }$-algebras generated by Fourier-Stieltjes transforms, Trans. Amer. Math. Soc. 164 (1972), 435–441. MR 310548, DOI 10.1090/S0002-9947-1972-0310548-3
- Charles F. Dunkl and Donald E. Ramirez, Subalgebras of the dual of the Fourier algebra of a compact group, Proc. Cambridge Philos. Soc. 71 (1972), 329–333. MR 306821, DOI 10.1017/s0305004100050568
- Charles F. Dunkl and Donald E. Ramirez, Existence and nonuniqueness of invariant means on ${\scr L}^{\infty }(\hat G)$, Proc. Amer. Math. Soc. 32 (1972), 525–530. MR 296609, DOI 10.1090/S0002-9939-1972-0296609-1
- Charles F. Dunkl and Donald E. Ramirez, Weakly almost periodic functionals on the Fourier algebra, Trans. Amer. Math. Soc. 185 (1973), 501–514. MR 372531, DOI 10.1090/S0002-9947-1973-0372531-2
- Pierre Eymard, L’algèbre de Fourier d’un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181–236 (French). MR 228628, DOI 10.24033/bsmf.1607
- Alessandro Figà-Talamanca and Massimo A. Picardello, Harmonic analysis on free groups, Lecture Notes in Pure and Applied Mathematics, vol. 87, Marcel Dekker, Inc., New York, 1983. MR 710827
- Edmond Granirer, Criteria for compactness and for discreteness of locally compact amenable groups, Proc. Amer. Math. Soc. 40 (1973), 615–624. MR 340962, DOI 10.1090/S0002-9939-1973-0340962-8
- Edmond E. Granirer, Weakly almost periodic and uniformly continuous functionals on the Fourier algebra of any locally compact group, Trans. Amer. Math. Soc. 189 (1974), 371–382. MR 336241, DOI 10.1090/S0002-9947-1974-0336241-0
- Edmond E. Granirer, Density theorems for some linear subspaces and some $C^*$-subalgebras of $\textrm {VN}(G)$, Symposia Mathematica, Vol. XXII (Convegno sull’Analisi Armonica e Spazi di Funzioni su Gruppi Localmente Compatti, INDAM, Rome, 1976) Academic Press, London, 1977, pp. 61–70. MR 0487287
- Edmond E. Granirer, On group representations whose $C^{\ast }$-algebra is an ideal in its von Neumann algebra, Ann. Inst. Fourier (Grenoble) 29 (1979), no. 4, v, 37–52 (English, with French summary). MR 558587
- Frederick P. Greenleaf, Invariant means on topological groups and their applications, Van Nostrand Mathematical Studies, No. 16, Van Nostrand Reinhold Co., New York-Toronto-London, 1969. MR 0251549
- Uffe Haagerup, An example of a nonnuclear $C^{\ast }$-algebra, which has the metric approximation property, Invent. Math. 50 (1978/79), no. 3, 279–293. MR 520930, DOI 10.1007/BF01410082
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. II: Structure and analysis for compact groups. Analysis on locally compact Abelian groups, Die Grundlehren der mathematischen Wissenschaften, Band 152, Springer-Verlag, New York-Berlin, 1970. MR 0262773
- G. Hochschild, The structure of Lie groups, Holden-Day, Inc., San Francisco-London-Amsterdam, 1965. MR 0207883
- M. F. Hutchinson, Non-tall compact groups admit infinite Sidon sets, J. Austral. Math. Soc. Ser. A 23 (1977), no. 4, 467–475. MR 477612, DOI 10.1017/s1446788700019613
- M. F. Hutchinson, Tall profinite groups, Bull. Austral. Math. Soc. 18 (1978), no. 3, 421–428. MR 508813, DOI 10.1017/S0004972700008285
- D. A. Každan, On the connection of the dual space of a group with the structure of its closed subgroups, Funkcional. Anal. i Priložen. 1 (1967), 71–74 (Russian). MR 0209390
- Anthony To Ming Lau, Uniformly continuous functionals on the Fourier algebra of any locally compact group, Trans. Amer. Math. Soc. 251 (1979), 39–59. MR 531968, DOI 10.1090/S0002-9947-1979-0531968-4
- Viktor Losert, Properties of the Fourier algebra that are equivalent to amenability, Proc. Amer. Math. Soc. 92 (1984), no. 3, 347–354. MR 759651, DOI 10.1090/S0002-9939-1984-0759651-8 W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory, Interscience, New York, 1966.
- G. A. Margulis, Some remarks on invariant means, Monatsh. Math. 90 (1980), no. 3, 233–235. MR 596890, DOI 10.1007/BF01295368
- Kelly McKennon, Multipliers, positive functionals, positive-definite functions, and Fourier-Stieltjes transforms, Memoirs of the American Mathematical Society, No. 111, American Mathematical Society, Providence, R.I., 1971. MR 0440299
- J. R. McMullen and J. F. Price, Rudin-Shapiro sequences for arbitrary compact groups, J. Austral. Math. Soc. Ser. A 22 (1976), no. 4, 421–430. MR 433138, DOI 10.1017/s144678870001627x
- Calvin C. Moore, Groups with finite dimensional irreducible representations, Trans. Amer. Math. Soc. 166 (1972), 401–410. MR 302817, DOI 10.1090/S0002-9947-1972-0302817-8
- I. Namioka, Følner’s conditions for amenable semi-groups, Math. Scand. 15 (1964), 18–28. MR 180832, DOI 10.7146/math.scand.a-10723
- Claudio Nebbia, Multipliers and asymptotic behaviour of the Fourier algebra of nonamenable groups, Proc. Amer. Math. Soc. 84 (1982), no. 4, 549–554. MR 643747, DOI 10.1090/S0002-9939-1982-0643747-3
- T. W. Palmer, Classes of nonabelian, noncompact, locally compact groups, Rocky Mountain J. Math. 8 (1978), no. 4, 683–741. MR 513952, DOI 10.1216/RMJ-1978-8-4-683
- Jean-Paul Pier, Amenable locally compact groups, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1984. A Wiley-Interscience Publication. MR 767264
- Joseph Rosenblatt, Uniqueness of invariant means for measure-preserving transformations, Trans. Amer. Math. Soc. 265 (1981), no. 2, 623–636. MR 610970, DOI 10.1090/S0002-9947-1981-0610970-7
- Joseph Rosenblatt, Translation-invariant linear forms on $L_p(G)$, Proc. Amer. Math. Soc. 94 (1985), no. 2, 226–228. MR 784168, DOI 10.1090/S0002-9939-1985-0784168-5
- Walter Rudin, Invariant means on $L^{\infty }$, Studia Math. 44 (1972), 219–227. MR 304975, DOI 10.4064/sm-44-3-219-227
- Dennis Sullivan, For $n>3$ there is only one finitely additive rotationally invariant measure on the $n$-sphere defined on all Lebesgue measurable subsets, Bull. Amer. Math. Soc. (N.S.) 4 (1981), no. 1, 121–123. MR 590825, DOI 10.1090/S0273-0979-1981-14880-1
- E. E. Granirer and M. Leinert, On some topologies which coincide on the unit sphere of the Fourier-Stieltjes algebra $B(G)$ and of the measure algebra $M(G)$, Rocky Mountain J. Math. 11 (1981), no. 3, 459–472. MR 722579, DOI 10.1216/RMJ-1981-11-3-459
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 317 (1990), 229-253
- MSC: Primary 43A60; Secondary 22D10, 22D25
- DOI: https://doi.org/10.1090/S0002-9947-1990-0943301-9
- MathSciNet review: 943301