Rapidly decreasing functions in reduced $C^ *$-algebras of groups
HTML articles powered by AMS MathViewer
- by Paul Jolissaint
- Trans. Amer. Math. Soc. 317 (1990), 167-196
- DOI: https://doi.org/10.1090/S0002-9947-1990-0943303-2
- PDF | Request permission
Abstract:
Let $\Gamma$ be a group. We associate to any length-function $L$ on $\Gamma$ the space $H_L^\infty (\Gamma )$ of rapidly decreasing functions on $\Gamma$ (with respect to $L$), which coincides with the space of smooth functions on the $k$-dimensional torus when $\Gamma = {{\bf {Z}}^k}$. We say that $\Gamma$ has property (RD) if there exists a length-function $L$ on $\Gamma$ such that $H_L^\infty (\Gamma )$ is contained in the reduced ${C^*}$-algebra $C_r^*(\Gamma )$ of $\Gamma$. We study the stability of property (RD) with respect to some constructions of groups such as subgroups, over-groups of finite index, semidirect and amalgamated products. Finally, we show that the following groups have property (RD): (1) Finitely generated groups of polynomial growth; (2) Discrete cocompact subgroups of the group of all isometries of any hyperbolic space.References
- Werner Ballmann, Mikhael Gromov, and Viktor Schroeder, Manifolds of nonpositive curvature, Progress in Mathematics, vol. 61, Birkhäuser Boston, Inc., Boston, MA, 1985. MR 823981, DOI 10.1007/978-1-4684-9159-3
- Kenneth S. Brown, Cohomology of groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York-Berlin, 1982. MR 672956, DOI 10.1007/978-1-4684-9327-6
- Gerhard Burde and Heiner Zieschang, Knots, De Gruyter Studies in Mathematics, vol. 5, Walter de Gruyter & Co., Berlin, 1985. MR 808776
- Pierre Eymard, L’algèbre de Fourier d’un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181–236 (French). MR 228628, DOI 10.24033/bsmf.1607
- William J. Floyd, Group completions and limit sets of Kleinian groups, Invent. Math. 57 (1980), no. 3, 205–218. MR 568933, DOI 10.1007/BF01418926
- Alessandro Figà-Talamanca and Massimo A. Picardello, Harmonic analysis on free groups, Lecture Notes in Pure and Applied Mathematics, vol. 87, Marcel Dekker, Inc., New York, 1983. MR 710827
- R. I. Grigorchuk, Degrees of growth of finitely generated groups and the theory of invariant means, Izv. Akad. Nauk SSSR Ser. Mat. 48 (1984), no. 5, 939–985 (Russian). MR 764305
- Mikhael Gromov, Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math. 53 (1981), 53–73. MR 623534, DOI 10.1007/BF02698687
- Uffe Haagerup, An example of a nonnuclear $C^{\ast }$-algebra, which has the metric approximation property, Invent. Math. 50 (1978/79), no. 3, 279–293. MR 520930, DOI 10.1007/BF01410082
- Carl Herz, Sur le phénomène de Kunze-Stein, C. R. Acad. Sci. Paris Sér. A-B 271 (1970), A491–A493 (French). MR 281022
- Paul Jolissaint, Croissance d’un groupe de génération finie et fonctions lisses sur son dual, C. R. Acad. Sci. Paris Sér. I Math. 300 (1985), no. 17, 601–604 (French, with English summary). MR 791097 —, Sur la ${C^*}$-algèbre réduite de certains groupes discrets d’isométries hyperboliques, C.R. Acad. Sci. Paris Sér. I 18 (1986), 657-660. —, $K$-theory of reduced ${C^*}$-algebras and rapidly decreasing functions on groups, $K$-Theory (to appear).
- Wilhelm Klingenberg, Riemannian geometry, de Gruyter Studies in Mathematics, vol. 1, Walter de Gruyter & Co., Berlin-New York, 1982. MR 666697
- Roger C. Lyndon and Paul E. Schupp, Combinatorial group theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 89, Springer-Verlag, Berlin-New York, 1977. MR 0577064
- G. D. Mostow, Strong rigidity of locally symmetric spaces, Annals of Mathematics Studies, No. 78, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1973. MR 0385004
- Gert K. Pedersen, $C^{\ast }$-algebras and their automorphism groups, London Mathematical Society Monographs, vol. 14, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1979. MR 548006
- Massimo A. Picardello, Positive definite functions and $L^p$ convolution operators on amalgams, Pacific J. Math. 123 (1986), no. 1, 209–221. MR 834149, DOI 10.2140/pjm.1986.123.209
- M. S. Raghunathan, Discrete subgroups of Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68, Springer-Verlag, New York-Heidelberg, 1972. MR 0507234, DOI 10.1007/978-3-642-86426-1
- M. Rajagopalan, On the $L^{p}$-space of a locally compact group, Colloq. Math. 10 (1963), 49–52. MR 148792, DOI 10.4064/cm-10-1-49-52
- Helmut H. Schaefer, Topological vector spaces, Graduate Texts in Mathematics, Vol. 3, Springer-Verlag, New York-Berlin, 1971. Third printing corrected. MR 0342978, DOI 10.1007/978-1-4684-9928-5
- Atle Selberg, On discontinuous groups in higher-dimensional symmetric spaces, Contributions to function theory (Internat. Colloq. Function Theory, Bombay, 1960) Tata Institute of Fundamental Research, Bombay, 1960, pp. 147–164. MR 0130324
- François Trèves, Topological vector spaces, distributions and kernels, Academic Press, New York-London, 1967. MR 0225131
- V. S. Varadarajan, Geometry of quantum theory, 2nd ed., Springer-Verlag, New York, 1985. MR 805158
- Joseph A. Wolf, Growth of finitely generated solvable groups and curvature of Riemannian manifolds, J. Differential Geometry 2 (1968), 421–446. MR 248688
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 317 (1990), 167-196
- MSC: Primary 22D25; Secondary 43A15, 46L99
- DOI: https://doi.org/10.1090/S0002-9947-1990-0943303-2
- MathSciNet review: 943303