Centers of generic Hecke algebras
HTML articles powered by AMS MathViewer
- by Lenny K. Jones
- Trans. Amer. Math. Soc. 317 (1990), 361-392
- DOI: https://doi.org/10.1090/S0002-9947-1990-0948191-6
- PDF | Request permission
Abstract:
Let $W$ be a Weyl group and let $W’$ be a parabolic subgroup of $W$. Define $A$ as follows: \[ A = R{ \otimes _{{\mathbf {Q}}[u]}}\mathcal {A}(W)\] where $\mathcal {A}(W)$ is the generic algebra of type ${A_n}$ over ${\mathbf {Q}}[u]$ an indeterminate, associated with the group $W$, and $R$ is a ${\mathbf {Q}}[u]$-algebra, possibly of infinite rank, in which $u$ is invertible. Similarly, we define $A’$ associated with $W’$. Let $M$ be an $A - A$ bimodule, and let $b \in M$. Define the relative norm [14] \[ {N_{W,W’}}(b) = \sum \limits _{t \in T} {{u^{ - l(t)}}{a_{{t^{ - 1}}}}b{a_t}} \] where $T$ is the set of distinguished right coset representives for $W’$ in $W$. We show that if $b \in {Z_M}(A’) = \{ m \in M|ma’ = a’m\quad \forall a’ \in A’\}$, then ${N_{W,W’}}(b) \in {Z_M}(A)$. In addition, other properties of the relative norm are given and used to develop a theory of induced modules for generic Hecke algebras including a Markey decomposition. This section of the paper is previously unpublished work of P. Hoefsmit and L. L. Scott. Let $\alpha = ({k_1},{k_2}, \ldots ,{k_z})$ be a partition of $n$ and let ${S_\alpha } = \Pi _{i = 1}^Z{S_{{k_i}}}$ be a "left-justified" parabolic subgroup of ${S_n}$ of shape $\alpha$. Define \[ {b_\alpha } = {N_{{S_n},{S_\alpha }}}({\mathcal {N}_\alpha })\], where \[ {\mathcal {N}_\alpha } = \prod \limits _{i = 1}^z {{N_{{S_{{k_i} - 1}},{S_1}}}({a_{{w_i}}})} \] with ${w_i}$ a ${k_i}$-cycle of length ${k_i} - 1$ in ${S_{{k_i}}}$. Then the main result of this paper is Theorem. The set $\{ {b_\alpha }|\alpha \vdash n\}$ is a basis for ${Z_{A({S_n})}}(A({S_n}))$ over ${\mathbf {Q}}[u,{u^{ - 1}}]$. Remark. The norms ${b_\alpha }$ in ${Z_{A({S_n})}}(A({S_n}))$ are analogs of conjugacy class sums in the center of ${\mathbf {Q}}{S_n}$ and, in fact, specialization of these norms at $u = 1$ gives the standard conjugacy class sum basis of the center of ${\mathbf {Q}}{S_n}$ up to coefficients from ${\mathbf {Q}}$.References
- Michael Aschbacher, Finite group theory, Cambridge Studies in Advanced Mathematics, vol. 10, Cambridge University Press, Cambridge, 1986. MR 895134
- N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1337, Hermann, Paris, 1968 (French). MR 0240238
- Roger W. Carter, Simple groups of Lie type, Pure and Applied Mathematics, Vol. 28, John Wiley & Sons, London-New York-Sydney, 1972. MR 0407163
- Charles W. Curtis, Representations of finite groups of Lie type, Bull. Amer. Math. Soc. (N.S.) 1 (1979), no. 5, 721–757. MR 537625, DOI 10.1090/S0273-0979-1979-14648-2
- Charles W. Curtis, On Lusztig’s isomorphism theorem for Hecke algebras, J. Algebra 92 (1985), no. 2, 348–365. MR 778453, DOI 10.1016/0021-8693(85)90125-5 —, Representation theory notes from a course given at the University of Virginia in 1975.
- C. W. Curtis, N. Iwahori, and R. Kilmoyer, Hecke algebras and characters of parabolic type of finite groups with $(B,$ $N)$-pairs, Inst. Hautes Études Sci. Publ. Math. 40 (1971), 81–116. MR 347996
- Charles W. Curtis and Irving Reiner, Representation theory of finite groups and associative algebras, Pure and Applied Mathematics, Vol. XI, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0144979
- Charles W. Curtis and Irving Reiner, Methods of representation theory. Vol. I, Pure and Applied Mathematics, John Wiley & Sons, Inc., New York, 1981. With applications to finite groups and orders. MR 632548
- Charles W. Curtis and Irving Reiner, Methods of representation theory. Vol. II, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1987. With applications to finite groups and orders; A Wiley-Interscience Publication. MR 892316 C. W. Curtis and L. L. Scott, unpublished work, 1974.
- Walter Feit, The representation theory of finite groups, North-Holland Mathematical Library, vol. 25, North-Holland Publishing Co., Amsterdam-New York, 1982. MR 661045 P. Hoefsmit, Representations of Hecke algebras of finite groups with $(B,N)$-pairs of classical type, Ph.D. Dissertation, University of British Columbia, Vancouver, 1974. P. Hoefsmit and L. L. Scott, unpublished manuscript, 1976.
- David Kazhdan and George Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), no. 2, 165–184. MR 560412, DOI 10.1007/BF01390031 R. Kolmoyer, Some irreducible complex representations of a finite group with a BN-pair, Ph.D. Dissertation, M.I.T., 1969. Brigette Kromar and Thomas Schmid-Leissler, Die irreduzißlen komponenten des Permutationscharakters $1_B^G$ einer endlichen $(B,N)$-Parr-Gruppe $G$, Diplomarbeit, Tübingen, 1976.
- P. Landrock, Finite group algebras and their modules, London Mathematical Society Lecture Note Series, vol. 84, Cambridge University Press, Cambridge, 1983. MR 737910, DOI 10.1017/CBO9781107325524
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 317 (1990), 361-392
- MSC: Primary 20C30; Secondary 20G05, 20G40, 22E50
- DOI: https://doi.org/10.1090/S0002-9947-1990-0948191-6
- MathSciNet review: 948191