Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Laws of trigonometry on $\textrm {SU}(3)$
HTML articles powered by AMS MathViewer

by Helmer Aslaksen PDF
Trans. Amer. Math. Soc. 317 (1990), 127-142 Request permission

Abstract:

The orbit space of congruence classes of triangles in $SU(3)$ has dimension $8$. Each corner is given by a pair of tangent vectors $(X,Y)$, and we consider the $8$ functions ${\text {tr}}{X^2},i{\text {tr}}{X^3},{\text {tr}}{Y^2},i{\text {tr}}{Y^3},{\text {tr}}XY,i{\text {tr}}{X^2}Y,i{\text {tr}}X{Y^2}$ and ${\text {tr}}{X^2}{Y^2}$ which are invariant under the full isometry group of $SU(3)$. We show that these $8$ corner invariants determine the isometry class of the triangle. We give relations (laws of trigonometry) between the invariants at the different corners, enabling us to determine the invariants at the remaining corners, including the values of the remaining side and angles, if we know one set of corner invariants. The invariants that only depend on one tangent vector we will call side invariants, while those that depend on two tangent vectors will be called angular invariants. For each triangle we then have $6$ side invariants and $12$ angular invariants. Hence we need $18 - 8 = 10$ laws of trigonometry. If we restrict to $SU(2)$, we get the cosine laws of spherical trigonometry. The basic tool for deriving these laws is a formula expressing ${\text {tr}}({\operatorname {exp}}X{\operatorname {exp}}Y)$ in terms of the corner invariants.
References
  • Wilhelm Blaschke and Hans Terheggen, Trigonometria hermitiana, Rend. Sem. Mat. Roma 3 (1939), 153–161 (Italian). MR 1572
  • U. Brehm, The shape invariant of triangles in two-point homogeneous spaces, unpublished manuscript.
  • J. L. Coolidge, Hermitian metrics, Ann. of Math. (2) 22 (1920), no. 1, 11–28. MR 1502568, DOI 10.2307/1967718
  • Ja. S. Dubnov, Sur une generalisation de l’équation de Hamilton-Cayley et sur les invariants simultanes de plusieurs affineurs, Trudy. Sem. Vektor. Tenzor. Anal. 2-3 (1935), 351-367.
  • Ya Dubnov, Complete system of invariants of two affinors in centro-affine space of two or three dimensions, Abh. Sem. Vektor- und Tensoranalysis [Trudy Sem. Vektor. Tenzor. Analizu] 5 (1941), 250–270 (Russian). MR 0016983
  • Wu-Yi Hsiang, On the laws of trigonometries of two-point homogeneous spaces, Ann. Global Anal. Geom. 7 (1989), no. 1, 29–45. MR 1029843, DOI 10.1007/BF00137400
  • John S. Lew, The generalized Cayley-Hamilton theorem in $n$ dimensions, Z. Angew. Math. Phys. 17 (1966), 650–653 (English, with French summary). MR 213381, DOI 10.1007/BF01597249
  • John S. Lew, Reducibility of matrix polynomials and their traces, Z. Angew. Math. Phys. 18 (1967), 289–293 (English, with French summary). MR 210725, DOI 10.1007/BF01596920
  • O. Loos, Symmetric spaces, Benjamin, 1969.
  • R. S. Rivlin, Further remarks on the stress-deformation relations for isotropic materials, J. Rational Mech. Anal. 4 (1955), 681–702. MR 71980, DOI 10.1512/iumj.1955.4.54025
  • B. A. Rozenfel′d, On the theory of symmetric spaces of rank one, Mat. Sb. N.S. 41(83) (1957), 373–380 (Russian). MR 0096271
  • K. S. Sibirskiĭ, Algebraic invariants of a system of matrices, Sibirsk. Mat. . 9 (1968), 152–164 (Russian). MR 0223379
  • P. A. Širokov, On a certain type of symmetric spaces, Mat. Sb. N.S. 41(83) (1957), 361–372 (Russian). MR 0096269
  • A. Cemal Eringen (ed.), Continuum physics. Vol. I, Academic Press, New York-London, 1971. Mathematics. MR 0468443
  • H. Terheggen, Zur analytischen Geometrie auf der Geraden von Hermite als Grenzfall der Geometrie in der Hermitischen Ebene und ihr Zusammenhang mit der gewöhnlichen sphärischen Trigonometrie, Jber. Deutsch. Math.-Verein. 50 (1940), 24–35 (German). MR 3030
  • Hsien-Chung Wang, Two-point homogeneous spaces, Ann. of Math. (2) 55 (1952), 177–191. MR 47345, DOI 10.2307/1969427
Similar Articles
Additional Information
  • © Copyright 1990 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 317 (1990), 127-142
  • MSC: Primary 53C20; Secondary 15A72, 20G20, 53C35
  • DOI: https://doi.org/10.1090/S0002-9947-1990-0961593-7
  • MathSciNet review: 961593