A fixed point theorem for weakly chainable plane continua
HTML articles powered by AMS MathViewer
- by Piotr Minc
- Trans. Amer. Math. Soc. 317 (1990), 303-312
- DOI: https://doi.org/10.1090/S0002-9947-1990-0968887-X
- PDF | Request permission
Abstract:
In this paper the fixed point theorem is proven for every plane acyclic continuum $X$ with the property that every indecomposable continuum in the boundary of $X$ is contained in a weakly chainable subcontinuum of $X$.References
- Harold Bell, On fixed point properties of plane continua, Trans. Amer. Math. Soc. 128 (1967), 539–548. MR 214036, DOI 10.1090/S0002-9947-1967-0214036-2
- David P. Bellamy, A tree-like continuum without the fixed-point property, Houston J. Math. 6 (1980), no. 1, 1–13. MR 575909
- R. H. Bing, Snake-like continua, Duke Math. J. 18 (1951), 653–663. MR 43450 K. Borsuk, Sur un continu acyclique qui se laisse transformer topologiquement en lui-meme sans point invariants, Fund. Math. 24 (1934), 51-58.
- K. Borsuk, A theorem on fixed points, Bull. Acad. Polon. Sci. Cl. III. 2 (1954), 17–20. MR 0064393
- Ryszard Engelking, Teoria wymiaru, Biblioteka Matematyczna, Tom 51. [Mathematics Library, Vol. 51], Państwowe Wydawnictwo Naukowe, Warsaw, 1977 (Polish). MR 0482696
- Lawrence Fearnley, Characterizations of the continuous images of the pseudo-arc, Trans. Amer. Math. Soc. 111 (1964), 380–399. MR 163293, DOI 10.1090/S0002-9947-1964-0163293-7
- Charles L. Hagopian, A fixed point theorem for plane continua, Bull. Amer. Math. Soc. 77 (1971), 351–354. MR 273591, DOI 10.1090/S0002-9904-1971-12690-3
- Charles L. Hagopian, Another fixed point theorem for plane continua, Proc. Amer. Math. Soc. 31 (1972), 627–628. MR 286093, DOI 10.1090/S0002-9939-1972-0286093-6
- O. H. Hamilton, A fixed point theorem for pseudo-arcs and certain other metric continua, Proc. Amer. Math. Soc. 2 (1951), 173–174. MR 39993, DOI 10.1090/S0002-9939-1951-0039993-2
- S. D. Iliadis, Positions of continua on the plane, and fixed points, Vestnik Moskov. Univ. Ser. I Mat. Meh. 25 (1970), no. 4, 66–70 (Russian, with English summary). MR 0287522
- Shin’ichi Kinoshita, On some contractible continua without fixed point property, Fund. Math. 40 (1953), 96–98. MR 60225, DOI 10.4064/fm-40-1-96-98
- Ronald J. Knill, Cones, products and fixed points, Fund. Math. 60 (1967), 35–46. MR 211389, DOI 10.4064/fm-60-1-35-46
- J. Krasinkiewicz, Concerning the boundaries of plane continua and the fixed point property, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 21 (1973), 427–431 (English, with Russian summary). MR 336716
- K. Kuratowski, Topology. Vol. II, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1968. New edition, revised and augmented; Translated from the French by A. Kirkor. MR 0259835
- A. Lelek, On weakly chainable continua, Fund. Math. 51 (1962/63), 271–282. MR 143182, DOI 10.4064/fm-51-3-271-282
- J. Mioduszewski, A functional conception of snake-like continua, Fund. Math. 51 (1962/63), 179–189. MR 144313, DOI 10.4064/fm-51-2-179-189
- Lex G. Oversteegen and James T. Rogers Jr., An inverse limit description of an atriodic tree-like continuum and an induced map without a fixed point, Houston J. Math. 6 (1980), no. 4, 549–564. MR 621749
- K. Sieklucki, On a class of plane acyclic continua with the fixed point property, Fund. Math. 63 (1968), 257–278. MR 240794, DOI 10.4064/fm-63-3-257-278
- T. van der Walt, Fixed and almost fixed points, Mathematical Centre Tracts, vol. 1, Mathematisch Centrum, Amsterdam, 1963. MR 0205246
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 317 (1990), 303-312
- MSC: Primary 54F20; Secondary 54H25
- DOI: https://doi.org/10.1090/S0002-9947-1990-0968887-X
- MathSciNet review: 968887