Perturbed dynamical systems with an attracting singularity and weak viscosity limits in Hamilton-Jacobi equations
HTML articles powered by AMS MathViewer
- by B. Perthame
- Trans. Amer. Math. Soc. 317 (1990), 723-748
- DOI: https://doi.org/10.1090/S0002-9947-1990-0943607-3
- PDF | Request permission
Abstract:
We give a new PDE proof of the Wentzell-Freidlin theorem concerning small perturbations of a dynamical system \[ \begin {gathered} {L_\varepsilon }{u_\varepsilon } = - \tfrac {\varepsilon } {2}\Delta {u_\varepsilon } - b \cdot \nabla {u_3} = 0\quad {\text {in}}\;\Omega , \hfill \\ {u_\varepsilon } = \varphi \quad {\text {on}}\;\partial \Omega . \hfill \\ \end {gathered} \] We prove that, if $b$ has a single attractive singular point, ${u_\varepsilon }$ converges uniformly on compact subsets of $\Omega$, and with an exponential decay, to a constant $\mu$, and we determine $\mu$. We also treat the case of Neumann boundary condition. In order to do so, we perform the asymptotic analysis for some ergodic measure which leads to a study of the viscosity limit of a Hamilton-Jacobi equation. This is achieved under very general assumptions by using a weak formulation of the viscosity limits of these equations. Résumé. Nous donnons une nouvelle preuve, par des méthodes EDP, du théorème de Wentzell-Freidlin concernant les petites perturbations d’un système dynamique: \[ \begin {gathered} {L_\varepsilon }{u_\varepsilon } = - \tfrac {\varepsilon } {2}\Delta {u_\varepsilon } - b \cdot \nabla {u_\varepsilon } = 0\quad {\text {dans}}\;\Omega , \hfill \\ {u_\varepsilon } = \varphi \quad {\text {sur}}\;\partial \Omega . \hfill \\ \end {gathered} \] Nous prouvons que, si $b$ a un seul point singulier attractif, alors ${u_\varepsilon }$ converge vers une constant $\mu$, uniformément sur tout compact, et avec une vitesse exponentielle. Nous déterminons $\mu$. Nous traitons aussi le cas de conditions aux limites de Neuman. Pour cela, nous faisons l’analyse asymptotique d’une mesure ergodique intervenant naturellement dans le problème, ce qui revient à étudier la limite par viscosité évanescente dans une équation de Hamilton-Jacobi. Ceci est réalisé sous des hypothèses très générales gâce à un passage à la limite faible dans cette équation.References
- Martino Bardi, An asymptotic formula for the Green’s function of an elliptic operator, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14 (1987), no. 4, 569–586 (1988). MR 963490
- G. Barles and B. Perthame, Discontinuous solutions of deterministic optimal stopping time problems, RAIRO Modél. Math. Anal. Numér. 21 (1987), no. 4, 557–579 (English, with French summary). MR 921827, DOI 10.1051/m2an/1987210405571
- G. Barles and B. Perthame, Exit time problems in optimal control and vanishing viscosity method, SIAM J. Control Optim. 26 (1988), no. 5, 1133–1148 (English, with French summary). MR 957658, DOI 10.1137/0326063 A. Bensoussan, Méthodes de perturbations singulières, Masson, Paris, 1989.
- Alain Bensoussan and Jacques-Louis Lions, On the asymptotic behaviour of the solution of variational inequalities, Theory of nonlinear operators (Proc. Fifth Internat. Summer School, Central Inst. Math. Mech. Acad. Sci. GDR, Berlin, 1977) Abh. Akad. Wiss. DDR, Abt. Math. Naturwiss. Tech., 1978, vol. 6, Akademie-Verlag, Berlin, 1978, pp. 25–40. MR 540445
- I. Capuzzo-Dolcetta and P.-L. Lions, Hamilton-Jacobi equations with state constraints, Trans. Amer. Math. Soc. 318 (1990), no. 2, 643–683. MR 951880, DOI 10.1090/S0002-9947-1990-0951880-0
- Michael G. Crandall and Pierre-Louis Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 277 (1983), no. 1, 1–42. MR 690039, DOI 10.1090/S0002-9947-1983-0690039-8
- Martin V. Day, Recent progress on the small parameter exit problem, Stochastics 20 (1987), no. 2, 121–150. MR 877726, DOI 10.1080/17442508708833440
- L. C. Evans and H. Ishii, A PDE approach to some asymptotic problems concerning random differential equations with small noise intensities, Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), no. 1, 1–20 (English, with French summary). MR 781589
- L. C. Evans and P. E. Souganidis, A PDE approach to geometric optics for certain semilinear parabolic equations, Indiana Univ. Math. J. 38 (1989), no. 1, 141–172. MR 982575, DOI 10.1512/iumj.1989.38.38007 —, A pde approach to certain large deviation problems for systems of parabolic equations, preprint.
- Wendell H. Fleming, Exit probabilities and optimal stochastic control, Appl. Math. Optim. 4 (1977/78), no. 4, 329–346. MR 512217, DOI 10.1007/BF01442148
- Wendell H. Fleming and Panagiotis E. Souganidis, PDE-viscosity solution approach to some problems of large deviations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 13 (1986), no. 2, 171–192. MR 876121
- M. I. Freidlin and A. D. Wentzell, Random perturbations of dynamical systems, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 260, Springer-Verlag, New York, 1984. Translated from the Russian by Joseph Szücs. MR 722136, DOI 10.1007/978-1-4684-0176-9
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190, DOI 10.1007/978-3-642-61798-0
- Hitoshi Ishii, A simple, direct proof of uniqueness for solutions of the Hamilton-Jacobi equations of eikonal type, Proc. Amer. Math. Soc. 100 (1987), no. 2, 247–251. MR 884461, DOI 10.1090/S0002-9939-1987-0884461-3 —, A boundary value problem of the Dirichlet type for Hamilton-Jacobi equations, preprint. H. Ishii and P. L. Lions, Viscosity solutions of fully nonlinear second order elliptic PDEs, preprint.
- S. Kamin, Elliptic perturbation of a first-order operator with a singular point of attracting type, Indiana Univ. Math. J. 27 (1978), no. 6, 935–952. MR 511249, DOI 10.1512/iumj.1978.27.27063 —, Elliptic perturbation for linear and nonlinear equations with a singular point, preprint.
- P.-L. Lions, Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations. I. The dynamic programming principle and applications, Comm. Partial Differential Equations 8 (1983), no. 10, 1101–1174. MR 709164, DOI 10.1080/03605308308820297
- P.-L. Lions, Neumann type boundary conditions for Hamilton-Jacobi equations, Duke Math. J. 52 (1985), no. 4, 793–820. MR 816386, DOI 10.1215/S0012-7094-85-05242-1
- B. J. Matkowsky and Z. Schuss, The exit problem for randomly perturbed dynamical systems, SIAM J. Appl. Math. 33 (1977), no. 2, 365–382. MR 451427, DOI 10.1137/0133024
- Benoît Perthame and Richard Sanders, The Neumann problem for nonlinear second order singular perturbation problems, SIAM J. Math. Anal. 19 (1988), no. 2, 295–311. MR 930028, DOI 10.1137/0519022
- Halil Mete Soner, Optimal control with state-space constraint. II, SIAM J. Control Optim. 24 (1986), no. 6, 1110–1122. MR 861089, DOI 10.1137/0324067
- A. D. Ventcel′ and M. I. Freĭdlin, Small random perturbations of dynamical systems, Uspehi Mat. Nauk 25 (1970), no. 1 (151), 3–55 (Russian). MR 0267221
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 317 (1990), 723-748
- MSC: Primary 35B25; Secondary 35F99, 58F30
- DOI: https://doi.org/10.1090/S0002-9947-1990-0943607-3
- MathSciNet review: 943607