On linear topological properties of $H^ 1$ on spaces of homogeneous type
HTML articles powered by AMS MathViewer
- by Paul F. X. Müller PDF
- Trans. Amer. Math. Soc. 317 (1990), 463-484 Request permission
Abstract:
Let $(X,d,\mu )$ be a space of homogeneous type. Let $B = \{ x \in X:\mu \{ x\} = 0\}$, then $\mu (B) > 0$ implies that ${H^1}(X,d,\mu )$ contains a complemented copy of ${H^1}(\delta )$. This applies to Hardy spaces ${H^1}(\partial \Omega ,d,\omega )$ associated to weak solutions of uniformly elliptic operators in divergence form. Under smoothness assumptions of the coefficients of the elliptic operators, we obtain that ${H^1}(\partial \Omega ,d,\omega )$ is isomorphic to ${H^1}(\delta )$.References
- L. Caffarelli, E. Fabes, S. Mortola, and S. Salsa, Boundary behavior of nonnegative solutions of elliptic operators in divergence form, Indiana Univ. Math. J. 30 (1981), no. 4, 621–640. MR 620271, DOI 10.1512/iumj.1981.30.30049
- Ronald R. Coifman and Guido Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), no. 4, 569–645. MR 447954, DOI 10.1090/S0002-9904-1977-14325-5
- Miguel de Guzmán, Real variable methods in Fourier analysis, Notas de Matemática [Mathematical Notes], vol. 75, North-Holland Publishing Co., Amsterdam-New York, 1981. MR 596037
- Björn E. J. Dahlberg, David S. Jerison, and Carlos E. Kenig, Area integral estimates for elliptic differential operators with nonsmooth coefficients, Ark. Mat. 22 (1984), no. 1, 97–108. MR 735881, DOI 10.1007/BF02384374 E. B. Dynkin, Markov processes, Vol. II, Springer-Verlag, 1965.
- E. B. Fabes, C. E. Kenig, and D. Jerison, Boundary behavior of solutions to degenerate elliptic equations, Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981) Wadsworth Math. Ser., Wadsworth, Belmont, CA, 1983, pp. 577–589. MR 730093
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Grundlehren der Mathematischen Wissenschaften, Vol. 224, Springer-Verlag, Berlin-New York, 1977. MR 0473443, DOI 10.1007/978-3-642-96379-7 P. W. Jones, Constructions with functions of bounded mean oscillation, Thesis, 1978.
- Peter W. Jones, A geometric localization theorem, Adv. in Math. 46 (1982), no. 1, 71–79. MR 676987, DOI 10.1016/0001-8708(82)90054-8
- Bernard Maurey, Isomorphismes entre espaces $H_{1}$, Acta Math. 145 (1980), no. 1-2, 79–120 (French). MR 586594, DOI 10.1007/BF02414186 P. F. X. Müller, On subsequences of the Haar system and isomorphism between ${H^1}$ spaces, Studia Math. 85 (1987), 73-90.
- Roberto A. Macías and Carlos Segovia, Lipschitz functions on spaces of homogeneous type, Adv. in Math. 33 (1979), no. 3, 257–270. MR 546295, DOI 10.1016/0001-8708(79)90012-4
- Roberto A. Macías and Carlos Segovia, Lipschitz functions on spaces of homogeneous type, Adv. in Math. 33 (1979), no. 3, 257–270. MR 546295, DOI 10.1016/0001-8708(79)90012-4
- Karl Endel Petersen, Brownian motion, Hardy spaces and bounded mean oscillation, London Mathematical Society Lecture Note Series, No. 28, Cambridge University Press, Cambridge-New York-Melbourne, 1977. MR 0651556, DOI 10.1017/CBO9780511662386
- Bernt Øksendal, Stochastic differential equations, Universitext, Springer-Verlag, Berlin, 1985. An introduction with applications. MR 804391, DOI 10.1007/978-3-662-13050-6
- Tomasz M. Wolniewicz, On isomorphisms between Hardy spaces on complex balls, Ark. Mat. 27 (1989), no. 1, 155–168. MR 1004730, DOI 10.1007/BF02386368
- P. Wojtaszczyk, Hardy spaces on the complex ball are isomorphic to Hardy spaces on the disc, $1\leq p<\infty$, Ann. of Math. (2) 118 (1983), no. 1, 21–34. MR 707159, DOI 10.2307/2006952
Additional Information
- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 317 (1990), 463-484
- MSC: Primary 46E15; Secondary 46B20
- DOI: https://doi.org/10.1090/S0002-9947-1990-0974522-7
- MathSciNet review: 974522