Outlet points and homogeneous continua
HTML articles powered by AMS MathViewer
- by Paweł Krupski and Janusz R. Prajs PDF
- Trans. Amer. Math. Soc. 318 (1990), 123-141 Request permission
Abstract:
(1) A proof is presented for Bing’s conjecture that homogeneous, treelike continua are hereditarily indecomposable. As a consequence, each homogeneous curve admits the continuous decomposition into the maximal terminal, homeomorphic, homogeneous, hereditarily indecomposable, treelike subcontinua. (2) A homogeneous, hereditarily unicoherent continuum contains either an arc or arbitrarily small, nondegenerate, indecomposable subcontinua. (3) A treelike continuum with property $K$ which is homogeneous with respect to confluent light mappings contains no two nondegenerate subcontinua with the one-point intersection.References
- R. H. Bing, Snake-like continua, Duke Math. J. 18 (1951), 653–663. MR 43450
- R. H. Bing, A simple closed curve is the only homogeneous bounded plane continuum that contains an arc, Canadian J. Math. 12 (1960), 209–230. MR 111001, DOI 10.4153/CJM-1960-018-x
- Janusz J. Charatonik, The property of Kelley and confluent mappings, Bull. Polish Acad. Sci. Math. 31 (1983), no. 9-12, 375–380 (1984) (English, with Russian summary). MR 756917
- J. J. Charatonik and T. Maćkowiak, Around Effros’ theorem, Trans. Amer. Math. Soc. 298 (1986), no. 2, 579–602. MR 860381, DOI 10.1090/S0002-9947-1986-0860381-9
- Edward G. Effros, Transformation groups and $C^{\ast }$-algebras, Ann. of Math. (2) 81 (1965), 38–55. MR 174987, DOI 10.2307/1970381
- Charles L. Hagopian, Indecomposable homogeneous plane continua are hereditarily indecomposable, Trans. Amer. Math. Soc. 224 (1976), no. 2, 339–350 (1977). MR 420572, DOI 10.1090/S0002-9947-1976-0420572-1
- Charles L. Hagopian, No homogeneous tree-like continuum contains an arc, Proc. Amer. Math. Soc. 88 (1983), no. 3, 560–564. MR 699434, DOI 10.1090/S0002-9939-1983-0699434-X
- Charles L. Hagopian, Atriodic homogeneous continua, Pacific J. Math. 113 (1984), no. 2, 333–347. MR 749539
- F. Burton Jones, Certain homogeneous unicoherent indecomposable continua, Proc. Amer. Math. Soc. 2 (1951), 855–859. MR 45372, DOI 10.1090/S0002-9939-1951-0045372-4 —, Homogeeous plane continua, Proc. Auburn Topology Conference, Auburn University, 1969, 45-56.
- Hisao Kato, Generalized homogeneity of continua and a question of J. J. Charatonik, Houston J. Math. 13 (1987), no. 1, 51–63. MR 884233
- J. L. Kelley, Hyperspaces of a continuum, Trans. Amer. Math. Soc. 52 (1942), 22–36. MR 6505, DOI 10.1090/S0002-9947-1942-0006505-8
- PawełKrupski, On homogeneous tree-like continua, Rend. Circ. Mat. Palermo (2) Suppl. 18 (1988), 327–336. Third National Conference on Topology (Italian) (Trieste, 1986). MR 958744
- K. Kuratowski, Topology. Vol. I, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1966. New edition, revised and augmented; Translated from the French by J. Jaworowski. MR 0217751
- K. Kuratowski, Topology. Vol. II, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1968. New edition, revised and augmented; Translated from the French by A. Kirkor. MR 0259835
- T. Maćkowiak, Terminal continua and the homogeneity, Fund. Math. 127 (1987), no. 3, 177–186. MR 917143, DOI 10.4064/fm-127-3-177-186
- T. Maćkowiak and E. D. Tymchatyn, Continuous mappings on continua. II, Dissertationes Math. (Rozprawy Mat.) 225 (1984), 57. MR 739739
- Sam B. Nadler Jr., Hyperspaces of sets, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 49, Marcel Dekker, Inc., New York-Basel, 1978. A text with research questions. MR 0500811 J. R. Prajs, Homogeneous, tree-like continua are hereditarily indecomposable, preprint.
- Janusz R. Prajs, Openly homogeneous continua having only arcs for proper subcontinua, Topology Appl. 31 (1989), no. 2, 133–147. MR 994406, DOI 10.1016/0166-8641(89)90077-1 —, Openly homogeneous continua in $2$-manifolds, preprint.
- James T. Rogers Jr., Homogeneous hereditarily indecomposable continua are tree-like, Houston J. Math. 8 (1982), no. 3, 421–428. MR 684167
- James T. Rogers Jr., Decompositions of homogeneous continua, Pacific J. Math. 99 (1982), no. 1, 137–144. MR 651491
- James T. Rogers Jr., Cell-like decompositions of homogeneous continua, Proc. Amer. Math. Soc. 87 (1983), no. 2, 375–377. MR 681852, DOI 10.1090/S0002-9939-1983-0681852-7
- James T. Rogers Jr., Homogeneous continua, Proceedings of the 1983 topology conference (Houston, Tex., 1983), 1983, pp. 213–233. MR 738476
- James T. Rogers Jr., Atriodic homogeneous nondegenerate continua are one-dimensional, Proc. Amer. Math. Soc. 102 (1988), no. 1, 191–192. MR 915742, DOI 10.1090/S0002-9939-1988-0915742-3
- James T. Rogers Jr., Decompositions of continua over the hyperbolic plane, Trans. Amer. Math. Soc. 310 (1988), no. 1, 277–291. MR 965753, DOI 10.1090/S0002-9947-1988-0965753-1 —, Hyperbolic ends and continua, preprint.
- Gerald S. Ungar, On all kinds of homogeneous spaces, Trans. Amer. Math. Soc. 212 (1975), 393–400. MR 385825, DOI 10.1090/S0002-9947-1975-0385825-3
- Gordon Thomas Whyburn, Analytic topology, American Mathematical Society Colloquium Publications, Vol. XXVIII, American Mathematical Society, Providence, R.I., 1963. MR 0182943
Additional Information
- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 318 (1990), 123-141
- MSC: Primary 54F20; Secondary 54C10, 54F50, 54F55
- DOI: https://doi.org/10.1090/S0002-9947-1990-0937246-8
- MathSciNet review: 937246