## Inequalities for eigenvalues of selfadjoint operators

HTML articles powered by AMS MathViewer

- by Stephen M. Hook
- Trans. Amer. Math. Soc.
**318**(1990), 237-259 - DOI: https://doi.org/10.1090/S0002-9947-1990-0943604-8
- PDF | Request permission

## Abstract:

We establish several inequalities for eigenvalues of selfadjoint operators in Hilbert space. The results are quite general. In particular, let $\Omega$ be a region in ${{\mathbf {R}}^n},\partial \Omega$ its boundary and $\Delta$ the Laplace operator in ${{\mathbf {R}}^n}$. Let $p(x)$ be a polynomial of degree $m$ having nonnegative real coefficients. We show that if the problems (1) $- \Delta u = \lambda u$ in $\Omega ;u = 0$ on $\partial \Omega$; (2) $p( - \Delta )\upsilon = \mu \upsilon$ in $\Omega ;\upsilon$ and its first $m - 1 \text {derivatives}=0 \text {on} \partial \Omega$; and (3) ${( - \Delta )^m}w = vw$ in $\Omega ;w$ and its first $m - 1 \text {derivatives}=0 \text {on} \partial \Omega$ are selfadjoint with discrete spectra of finite multiplicity ${\lambda _1} \leq {\lambda _2} \leq \cdots$ etc. then (4) $p(\Gamma _i^{1/m}) \geq {\mu _i} \geq p({\lambda _i})$ for each index $i$. The set of problems (1), (2), (3) and the result (4) is only one example of our more general result. The above problems (1), (2), and (3) can be thought of as related through the single operator given by the Laplacian. We also establish results for eigenvalues for unrelated operators. Let $A$, $B$ and $A + B$ be selfadjoint on domains ${D_A},{D_B}$, and ${D_{A + B}}$ with ${D_{A + B}} \subseteq {D_A} \cap {D_B}$. If $A$, $B$, and $A + B$ have discrete spectra $\{ {\lambda _i}\} _{i = 1}^\infty ,\{ {\mu _i}\} _{i = 1}^\infty$ and $\{ {\Gamma _i}\} _{i = 1}^\infty$ arranged in ascending order, as above, then inequality (5) $\sum \nolimits _{i = 1}^n {{\Gamma _i}} \geq \sum \nolimits _{i = 1}^n {({\lambda _i} + {v_i})}$ is established for each positive integer $n$.## References

- Robert A. Adams,
*Sobolev spaces*, Pure and Applied Mathematics, Vol. 65, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR**0450957** - Zu Chi Chen,
*Inequalities for eigenvalues of a class of polyharmonic operators*, Appl. Anal.**27**(1988), no. 4, 289–314. MR**936473**, DOI 10.1080/00036818808839742 - R. Courant and D. Hilbert,
*Methods of mathematical physics. Vol. I*, Interscience Publishers, Inc., New York, N.Y., 1953. MR**0065391** - J. B. Diaz,
*Upper and lower bounds for eigenvalues*, Proceedings of Symposia in Applied Mathematics, Vol. VIII, Calculus of variations and its applications, McGraw-Hill Book Co., Inc., New York-Toronto-London, for the American Mathematical Society, Providence, R.I., 1958, pp. 53–78. MR**0092235**
S. M. Hook, - H. A. Levine and M. H. Protter,
*Unrestricted lower bounds for eigenvalues for classes of elliptic equations and systems of equations with applications to problems in elasticity*, Math. Methods Appl. Sci.**7**(1985), no. 2, 210–222. MR**797333**, DOI 10.1002/mma.1670070113 - L. E. Payne,
*New isoperimetric inequalities for eigenvalues and other physical quantities*, Comm. Pure Appl. Math.**9**(1956), 531–542. MR**81433**, DOI 10.1002/cpa.3160090323
A. Weinstein, - Alexander Weinstein and William Stenger,
*Methods of intermediate problems for eigenvalues*, Mathematics in Science and Engineering, Vol. 89, Academic Press, New York-London, 1972. Theory and ramifications. MR**0477971**

*Inequalities for eigenvalues of self-adjoint operators*, Doctoral Dissertation, Univ. of California, Berkeley, 1986.

*Etudes des spectres des equations aux derives partielles de la theorie des plaques elastiques*, Mem. Sci. Math.

**88**(1937).

## Bibliographic Information

- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**318**(1990), 237-259 - MSC: Primary 47A70; Secondary 35P05, 47B25, 49G20
- DOI: https://doi.org/10.1090/S0002-9947-1990-0943604-8
- MathSciNet review: 943604