Algebraically invariant extensions of $\sigma$-finite measures on Euclidean space
HTML articles powered by AMS MathViewer
- by Krzysztof Ciesielski PDF
- Trans. Amer. Math. Soc. 318 (1990), 261-273 Request permission
Abstract:
Let $G$ be a group of algebraic transformations of ${{\mathbf {R}}^n}$, i,e., the group of functions generated by bijections of ${{\mathbf {R}}^n}$ of the form $({f_1}, \ldots ,{f_n})$ where each ${f_i}$ is a rational function with coefficients in ${\mathbf {R}}$ in $n$-variables. For a function $\gamma :G \to (0,\infty )$ we say that a measure $\mu$ on ${{\mathbf {R}}^n}$ is $\gamma$-invariant when $\mu (g[A]) = \gamma (g)\cdot \mu (A)$ for every $g \in G$ and every $\mu$-measurable set $A$. We will examine the question: "Does there exist a proper $\gamma$-invariant extension of $\mu ?$ We prove that if $\mu$ is $\sigma$-finite then such an extension exists whenever $G$ contains an uncountable subset of rational functions $H \subset {({\mathbf {R}}({X_1}, \ldots ,{X_n}))^n}$ such that $\mu (\{ x:{h_1}(x) = {h_2}(x)\} ) = 0$ for all ${h_1},{h_2} \in H,{h_1} \ne {h_2}$. In particular if $G$ is any uncountable subgroup of affine transformations of ${{\bf {R}}^n},\gamma (g{\text {)}}$ is the absolute value of the Jacobian of $g \in G$ and $\mu$ is a $\gamma$-invariant extension of the $n$-dimensional Lebesgue measure then $\mu$ has a proper $\gamma$-invariant extension. The conclusion remains true for any $\sigma$-finite measure if $G$ is a transitive group of isometries of ${{\mathbf {R}}^n}$. An easy strengthening of this last corollary gives also an answer to a problem of Harazisvili.References
- Alan F. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1983. MR 698777, DOI 10.1007/978-1-4612-1146-4
- Model theory, Handbook of mathematical logic, Part A, Studies in Logic and the Foundations of Math., Vol. 90, North-Holland, Amsterdam, 1977, pp. 3–313. With contributions by Jon Barwise, H. Jerome Keisler, Paul C. Eklof, Angus Macintyre, Michael Morley, K. D. Stroyan, M. Makkai, A. Kock and G. E. Reyes. MR 0491125
- Krzysztof Ciesielski, How good is Lebesgue measure?, Math. Intelligencer 11 (1989), no. 2, 54–58. MR 994965, DOI 10.1007/BF03023824
- Krzysztof Ciesielski and Andrzej Pelc, Extensions of invariant measures on Euclidean spaces, Fund. Math. 125 (1985), no. 1, 1–10. MR 813984, DOI 10.4064/fm-125-1-1-10
- Robert C. Gunning and Hugo Rossi, Analytic functions of several complex variables, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965. MR 0180696 A. B. Harazisvili, On Sierpinski’s problem concerning strict extendibility of an invariant measure, Soviet Math. Dokl. 18 (1977), 71-74.
- A. B. Kharazishvili, Groups of transformations and absolutely negligible sets, Soobshch. Akad. Nauk Gruzin. SSR 115 (1984), no. 3, 505–508 (Russian, with English and Georgian summaries). MR 797907
- A. Hulanicki, Invariant extensions of the Lebesgue measure, Fund. Math. 51 (1962/63), 111–115. MR 142709, DOI 10.4064/fm-51-2-111-115
- Thomas Jech, Set theory, Pure and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 506523
- Serge Lang, Algebra, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1965. MR 0197234
- Jan Mycielski and Stan Wagon, Large free groups of isometries and their geometrical uses, Enseign. Math. (2) 30 (1984), no. 3-4, 247–267. MR 767903
- Andrzej Pelc, Invariant measures and ideals on discrete groups, Dissertationes Math. (Rozprawy Mat.) 255 (1986), 47. MR 872392 S. S. Pkhakadze, $K$ teorii lebegovskoi miery, Trudy Tbiliss. Mat. Inst. 25 (1958). (Russian)
- Abraham Robinson, Complete theories, North-Holland Publishing Co., Amsterdam, 1956. MR 0075897
- Walter Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987. MR 924157 E. Szpilrajn, Sur l’extension de la mesure lebesguienne, Fund. Math. 25 (1935), 551-558. (French)
- B. Węglorz, Large invariant ideals on algebras, Algebra Universalis 13 (1981), no. 1, 41–55. MR 631408, DOI 10.1007/BF02483821
Additional Information
- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 318 (1990), 261-273
- MSC: Primary 28C10
- DOI: https://doi.org/10.1090/S0002-9947-1990-0946422-X
- MathSciNet review: 946422