## Algebraically invariant extensions of $\sigma$-finite measures on Euclidean space

HTML articles powered by AMS MathViewer

- by Krzysztof Ciesielski PDF
- Trans. Amer. Math. Soc.
**318**(1990), 261-273 Request permission

## Abstract:

Let $G$ be a group of algebraic transformations of ${{\mathbf {R}}^n}$, i,e., the group of functions generated by bijections of ${{\mathbf {R}}^n}$ of the form $({f_1}, \ldots ,{f_n})$ where each ${f_i}$ is a rational function with coefficients in ${\mathbf {R}}$ in $n$-variables. For a function $\gamma :G \to (0,\infty )$ we say that a measure $\mu$ on ${{\mathbf {R}}^n}$ is $\gamma$-invariant when $\mu (g[A]) = \gamma (g)\cdot \mu (A)$ for every $g \in G$ and every $\mu$-measurable set $A$. We will examine the question: "Does there exist a proper $\gamma$-invariant extension of $\mu ?$ We prove that if $\mu$ is $\sigma$-finite then such an extension exists whenever $G$ contains an uncountable subset of rational functions $H \subset {({\mathbf {R}}({X_1}, \ldots ,{X_n}))^n}$ such that $\mu (\{ x:{h_1}(x) = {h_2}(x)\} ) = 0$ for all ${h_1},{h_2} \in H,{h_1} \ne {h_2}$. In particular if $G$ is any uncountable subgroup of affine transformations of ${{\bf {R}}^n},\gamma (g{\text {)}}$ is the absolute value of the Jacobian of $g \in G$ and $\mu$ is a $\gamma$-invariant extension of the $n$-dimensional Lebesgue measure then $\mu$ has a proper $\gamma$-invariant extension. The conclusion remains true for any $\sigma$-finite measure if $G$ is a transitive group of isometries of ${{\mathbf {R}}^n}$. An easy strengthening of this last corollary gives also an answer to a problem of Harazisvili.## References

- Alan F. Beardon,
*The geometry of discrete groups*, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1983. MR**698777**, DOI 10.1007/978-1-4612-1146-4 *Model theory*, Handbook of mathematical logic, Part A, Studies in Logic and the Foundations of Math., Vol. 90, North-Holland, Amsterdam, 1977, pp. 3–313. With contributions by Jon Barwise, H. Jerome Keisler, Paul C. Eklof, Angus Macintyre, Michael Morley, K. D. Stroyan, M. Makkai, A. Kock and G. E. Reyes. MR**0491125**- Krzysztof Ciesielski,
*How good is Lebesgue measure?*, Math. Intelligencer**11**(1989), no. 2, 54–58. MR**994965**, DOI 10.1007/BF03023824 - Krzysztof Ciesielski and Andrzej Pelc,
*Extensions of invariant measures on Euclidean spaces*, Fund. Math.**125**(1985), no. 1, 1–10. MR**813984**, DOI 10.4064/fm-125-1-1-10 - Robert C. Gunning and Hugo Rossi,
*Analytic functions of several complex variables*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965. MR**0180696**
A. B. Harazisvili, - A. B. Kharazishvili,
*Groups of transformations and absolutely negligible sets*, Soobshch. Akad. Nauk Gruzin. SSR**115**(1984), no. 3, 505–508 (Russian, with English and Georgian summaries). MR**797907** - A. Hulanicki,
*Invariant extensions of the Lebesgue measure*, Fund. Math.**51**(1962/63), 111–115. MR**142709**, DOI 10.4064/fm-51-2-111-115 - Thomas Jech,
*Set theory*, Pure and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR**506523** - Serge Lang,
*Algebra*, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1965. MR**0197234** - Jan Mycielski and Stan Wagon,
*Large free groups of isometries and their geometrical uses*, Enseign. Math. (2)**30**(1984), no. 3-4, 247–267. MR**767903** - Andrzej Pelc,
*Invariant measures and ideals on discrete groups*, Dissertationes Math. (Rozprawy Mat.)**255**(1986), 47. MR**872392**
S. S. Pkhakadze, $K$ - Abraham Robinson,
*Complete theories*, North-Holland Publishing Co., Amsterdam, 1956. MR**0075897** - Walter Rudin,
*Real and complex analysis*, 3rd ed., McGraw-Hill Book Co., New York, 1987. MR**924157**
E. Szpilrajn, - B. Węglorz,
*Large invariant ideals on algebras*, Algebra Universalis**13**(1981), no. 1, 41–55. MR**631408**, DOI 10.1007/BF02483821

*On Sierpinski’s problem concerning strict extendibility of an invariant measure*, Soviet Math. Dokl.

**18**(1977), 71-74.

*teorii lebegovskoi miery*, Trudy Tbiliss. Mat. Inst.

**25**(1958). (Russian)

*Sur l’extension de la mesure lebesguienne*, Fund. Math.

**25**(1935), 551-558. (French)

## Additional Information

- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**318**(1990), 261-273 - MSC: Primary 28C10
- DOI: https://doi.org/10.1090/S0002-9947-1990-0946422-X
- MathSciNet review: 946422