## A Hurewicz spectral sequence for homology

HTML articles powered by AMS MathViewer

- by David A. Blanc PDF
- Trans. Amer. Math. Soc.
**318**(1990), 335-354 Request permission

## Abstract:

For any connected space ${\mathbf {X}}$ and ring $R$, we describe a first-quadrant spectral sequence converging to ${\tilde H_*}({\bf {X}};R)$, whose ${E^2}$-term depends only on the homotopy groups of ${\mathbf {X}}$ and the action of the primary homotopy operations on them. We show that (for simply connected ${\mathbf {X}}$) the ${E^2}$-term vanishes below a line of slope $1/2$; computing part of the ${E^2}$-term just above this line, we find a certain periodicity, which shows, in particular, that this vanishing line is best possible. We also show how the differentials in this spectral sequence can be used to compute certain Toda brackets.## References

- J. F. Adams,
*Lectures on generalised cohomology*, Category Theory, Homology Theory and their Applications, III (Battelle Institute Conference, Seattle, Wash., 1968, Vol. Three), Springer, Berlin, 1969, pp. 1–138. MR**0251716** - A. K. Bousfield and D. M. Kan,
*Homotopy limits, completions and localizations*, Lecture Notes in Mathematics, Vol. 304, Springer-Verlag, Berlin-New York, 1972. MR**0365573** - Henri Cartan and Samuel Eilenberg,
*Homological algebra*, Princeton University Press, Princeton, N. J., 1956. MR**0077480** - P. J. Hilton,
*On the homotopy groups of the union of spheres*, J. London Math. Soc.**30**(1955), 154–172. MR**68218**, DOI 10.1112/jlms/s1-30.2.154 - P. J. Hilton,
*Calculation of the homotopy groups of $A_n^2$-polyhedra. I*, Quart. J. Math. Oxford Ser. (2)**1**(1950), 299–309. MR**39251**, DOI 10.1093/qmath/1.1.299 - P. J. Hilton,
*Calculations of the homotopy groups of $A_n^2$-polyhedra. II*, Quart. J. Math. Oxford Ser. (2)**2**(1951), 228–240. MR**43462**, DOI 10.1093/qmath/2.1.228 - Daniel M. Kan,
*Minimal free c.s.s. groups*, Illinois J. Math.**2**(1958), 537–547. MR**126273** - Daniel M. Kan,
*A relation between $\textrm {CW}$-complexes and free c.s.s. groups*, Amer. J. Math.**81**(1959), 512–528. MR**111036**, DOI 10.2307/2372755 - T. Y. Lin,
*Homological algebra of stable homotopy ring $\pi _{^{\ast } }$ of spheres*, Pacific J. Math.**38**(1971), 117–143. MR**307233** - Saunders Mac Lane,
*Categories for the working mathematician*, 2nd ed., Graduate Texts in Mathematics, vol. 5, Springer-Verlag, New York, 1998. MR**1712872**
—, - J. Peter May,
*Simplicial objects in algebraic topology*, Van Nostrand Mathematical Studies, No. 11, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR**0222892**
J. C. Moore, - Daniel G. Quillen,
*Homotopical algebra*, Lecture Notes in Mathematics, No. 43, Springer-Verlag, Berlin-New York, 1967. MR**0223432** - Daniel Quillen,
*On the (co-) homology of commutative rings*, Applications of Categorical Algebra (Proc. Sympos. Pure Math., Vol. XVII, New York, 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 65–87. MR**0257068** - D. G. Quillen,
*Spectral sequences of a double semi-simplicial group*, Topology**5**(1966), 155–157. MR**195097**, DOI 10.1016/0040-9383(66)90016-4 - Graeme Segal,
*Classifying spaces and spectral sequences*, Inst. Hautes Études Sci. Publ. Math.**34**(1968), 105–112. MR**232393** - Christopher R. Stover,
*A van Kampen spectral sequence for higher homotopy groups*, Topology**29**(1990), no. 1, 9–26. MR**1046622**, DOI 10.1016/0040-9383(90)90022-C - George W. Whitehead,
*Elements of homotopy theory*, Graduate Texts in Mathematics, vol. 61, Springer-Verlag, New York-Berlin, 1978. MR**516508**

*Homology*, Springer-Verlag, Berlin and New York, 1963.

*Homotopie des complexes monoïdaux*, I, Sèm. Henri Cartan

**7**(1954-55), $\S 18$.

## Additional Information

- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**318**(1990), 335-354 - MSC: Primary 55T99; Secondary 55Q35
- DOI: https://doi.org/10.1090/S0002-9947-1990-0956029-6
- MathSciNet review: 956029