Unique continuation for $\Delta +v$ and the C. Fefferman-Phong class
HTML articles powered by AMS MathViewer
- by Sagun Chanillo and Eric Sawyer PDF
- Trans. Amer. Math. Soc. 318 (1990), 275-300 Request permission
Abstract:
We show that the strong unique continuation property holds for the inequality $\left | {\Delta u} \right | \leq \left | \upsilon \right |\left | u \right |$, where the potential $\upsilon (x)$ satisfies the C. Fefferman-Phong condition in a certain range of $p$ values. We also deal with the situation of $u(x)$ vanishing at infinity. These are all consequences of appropriate Carleman inequalities.References
- B. Barceló, C. E. Kenig, A. Ruiz, and C. D. Sogge, Weighted Sobolev inequalities and unique continuation for the Laplacian plus lower order terms, Illinois J. Math. 32 (1988), no. 2, 230–245. MR 945861, DOI 10.1215/ijm/1255989128
- Sagun Chanillo and Richard L. Wheeden, $L^p$-estimates for fractional integrals and Sobolev inequalities with applications to Schrödinger operators, Comm. Partial Differential Equations 10 (1985), no. 9, 1077–1116. MR 806256, DOI 10.1080/03605308508820401 S. Chiarenza and A. Ruiz,
- R. R. Coifman and R. Rochberg, Another characterization of BMO, Proc. Amer. Math. Soc. 79 (1980), no. 2, 249–254. MR 565349, DOI 10.1090/S0002-9939-1980-0565349-8
- Charles L. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc. (N.S.) 9 (1983), no. 2, 129–206. MR 707957, DOI 10.1090/S0273-0979-1983-15154-6
- I. M. Gel’fand and G. E. Shilov, Generalized functions. Vol. I: Properties and operations, Academic Press, New York-London, 1964. Translated by Eugene Saletan. MR 0166596
- David Jerison and Carlos E. Kenig, Unique continuation and absence of positive eigenvalues for Schrödinger operators, Ann. of Math. (2) 121 (1985), no. 3, 463–494. With an appendix by E. M. Stein. MR 794370, DOI 10.2307/1971205 C. E. Kenig, Lecture notesat conference in harmonic analysis at El Escorial, 1987.
- C. E. Kenig, A. Ruiz, and C. D. Sogge, Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators, Duke Math. J. 55 (1987), no. 2, 329–347. MR 894584, DOI 10.1215/S0012-7094-87-05518-9
- R. Kerman and E. Sawyer, The trace inequality and eigenvalue estimates for Schrödinger operators, Ann. Inst. Fourier (Grenoble) 36 (1986), no. 4, 207–228 (English, with French summary). MR 867921, DOI 10.5802/aif.1074
- Douglas S. Kurtz, Littlewood-Paley and multiplier theorems on weighted $L^{p}$ spaces, Trans. Amer. Math. Soc. 259 (1980), no. 1, 235–254. MR 561835, DOI 10.1090/S0002-9947-1980-0561835-X
- Gary B. Roberts, Uniqueness in the Cauchy problem for characteristic operators of Fuchsian type, J. Differential Equations 38 (1980), no. 3, 374–392. MR 605056, DOI 10.1016/0022-0396(80)90014-5
- Eric T. Sawyer, Unique continuation for Schrödinger operators in dimension three or less, Ann. Inst. Fourier (Grenoble) 34 (1984), no. 3, 189–200 (English, with French summary). MR 762698, DOI 10.5802/aif.982
- David Jerison and Carlos E. Kenig, Unique continuation and absence of positive eigenvalues for Schrödinger operators, Ann. of Math. (2) 121 (1985), no. 3, 463–494. With an appendix by E. M. Stein. MR 794370, DOI 10.2307/1971205
- Elias M. Stein, Interpolation of linear operators, Trans. Amer. Math. Soc. 83 (1956), 482–492. MR 82586, DOI 10.1090/S0002-9947-1956-0082586-0
- Peter A. Tomas, Restriction theorems for the Fourier transform, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978) Proc. Sympos. Pure Math., XXXV, Part, Amer. Math. Soc., Providence, R.I., 1979, pp. 111–114. MR 545245
Additional Information
- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 318 (1990), 275-300
- MSC: Primary 35J10; Secondary 35B99
- DOI: https://doi.org/10.1090/S0002-9947-1990-0958886-6
- MathSciNet review: 958886