## Massey products in the cohomology of groups with applications to link theory

HTML articles powered by AMS MathViewer

- by David Stein PDF
- Trans. Amer. Math. Soc.
**318**(1990), 301-325 Request permission

## Abstract:

Invariants of links in ${S^3}$ are developed using a modification of the Massey product of one-dimensional classes in the cohomology of certain groups. The theory yields two types of invariants, invariants which depend upon a collection of meridians, or basing, of a link, and invariants which do not. The invariants, which are independent of the basing, are compared with John Milnor’s $\overline \mu$-invariants. For two component links, a collection of ostensibly based invariants is shown to be independent of the basing. If the linking number of the components of such a link is zero, the resulting invariants may be equivalent to the Sato-Levine-Cochran invariants.## References

- Tim D. Cochran,
*Geometric invariants of link cobordism*, Comment. Math. Helv.**60**(1985), no. 2, 291–311. MR**800009**, DOI 10.1007/BF02567416
—, - William G. Dwyer,
*Homology, Massey products and maps between groups*, J. Pure Appl. Algebra**6**(1975), no. 2, 177–190. MR**385851**, DOI 10.1016/0022-4049(75)90006-7 - Roger A. Fenn,
*Techniques of geometric topology*, London Mathematical Society Lecture Note Series, vol. 57, Cambridge University Press, Cambridge, 1983. MR**787801** - David Kraines,
*Massey higher products*, Trans. Amer. Math. Soc.**124**(1966), 431–449. MR**202136**, DOI 10.1090/S0002-9947-1966-0202136-1 - W. S. Massey,
*Higher order linking numbers*, Conf. on Algebraic Topology (Univ. of Illinois at Chicago Circle, Chicago, Ill., 1968) Univ. of Illinois at Chicago Circle, Chicago, Ill., 1969, pp. 174–205. MR**0254832** - W. S. Massey,
*Some higher order cohomology operations*, Symposium internacional de topología algebraica International symposium on algebraic topology, Universidad Nacional Autónoma de México and UNESCO, Mexico City, 1958, pp. 145–154. MR**0098366** - John Milnor,
*Link groups*, Ann. of Math. (2)**59**(1954), 177–195. MR**71020**, DOI 10.2307/1969685 - John Milnor,
*Isotopy of links*, Algebraic geometry and topology. A symposium in honor of S. Lefschetz, Princeton University Press, Princeton, N.J., 1957, pp. 280–306. MR**0092150** - Richard Porter,
*Milnor’s $\bar \mu$-invariants and Massey products*, Trans. Amer. Math. Soc.**257**(1980), no. 1, 39–71. MR**549154**, DOI 10.1090/S0002-9947-1980-0549154-9 - Dale Rolfsen,
*Knots and links*, Mathematics Lecture Series, No. 7, Publish or Perish, Inc., Berkeley, Calif., 1976. MR**0515288**
N. A. Sato, - John Stallings,
*Homology and central series of groups*, J. Algebra**2**(1965), 170–181. MR**175956**, DOI 10.1016/0021-8693(65)90017-7
D. W. Stein, - V. G. Turaev,
*The Milnor invariants and Massey products*, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)**66**(1976), 189–203, 209–210 (Russian, with English summary). Studies in topology, II. MR**0451251**

*Derivatives of links: Milnor’s concordance invariants and Massey’s products*, preprint.

*Cobordism of semi-boundary links*, Topology Appl.

**18**(1984).

*Massey products in the cohomology of groups with applications to link theory*, Ph.D. Thesis, Brandeis Univ., 1986. —,

*Computing Massey product invariants of links*, Proc. 1987 Georgia Topology Conference, Topology Appl. (to appear).

## Additional Information

- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**318**(1990), 301-325 - MSC: Primary 57M25; Secondary 55S30
- DOI: https://doi.org/10.1090/S0002-9947-1990-0958903-3
- MathSciNet review: 958903