Sums of linked ideals
HTML articles powered by AMS MathViewer
- by Bernd Ulrich PDF
- Trans. Amer. Math. Soc. 318 (1990), 1-42 Request permission
Abstract:
It is shown that the sum of two geometrically linked ideals in the linkage class of a complete intersection is again an ideal in the linkage class of a complete intersection. Conversely, every Gorenstein ideal (of height at least two) in the linkage class of a complete intersection can be obtained as a "generalized localization" of a sum of two geometrically linked ideals in the linkage class of a complete intersection. We also investigate sums of doubly linked Gorenstein ideals. As an application, we construct a perfect prime ideal which is strongly nonobstructed, but not strongly Cohen-Macaulay, and a perfect prime ideal which is not strongly nonobstructed, but whose entire linkage class is strongly Cohen-Macaulay.References
- Aldo Andreotti and Paolo Salmon, Anelli con unica decomponibilità in fattori primi ed un problema di intersezioni complete, Monatsh. Math. 61 (1957), 97–142 (Italian). MR 104662, DOI 10.1007/BF01641483
- Roger Apéry, Sur les courbes de première espèce de l’espace à trois dimensions, C. R. Acad. Sci. Paris 220 (1945), 271–272 (French). MR 13559
- Lâcezar Avramov and Jürgen Herzog, The Koszul algebra of a codimension $2$ embedding, Math. Z. 175 (1980), no. 3, 249–260. MR 602637, DOI 10.1007/BF01163026
- David A. Buchsbaum and David Eisenbud, Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension $3$, Amer. J. Math. 99 (1977), no. 3, 447–485. MR 453723, DOI 10.2307/2373926 R.-O. Buchweitz, Contributions à la théorie des singularités, Thesis, Université Paris VII, 1981. R.-O. Buchweitz and B. Ulrich, Homological properties which are invariant under linkage, preprint.
- David Eisenbud, Some directions of recent progress in commutative algebra, Algebraic geometry (Proc. Sympos. Pure Math., Vol. 29, Humboldt State Univ., Arcata, Calif., 1974) Amer. Math. Soc., Providence, R.I., 1975, pp. 111–128. MR 0384767 F. Gaeta, Quelques progrès récents dans la classification des variétés algébriques d’un espace projective, Deuxième Colloque de Géométrie Algébrique, Liège, 1952.
- Jürgen Herzog, Ein Cohen-Macaulay-Kriterium mit Anwendungen auf den Konormalenmodul und den Differentialmodul, Math. Z. 163 (1978), no. 2, 149–162 (German). MR 512469, DOI 10.1007/BF01214062
- Jürgen Herzog, Deformationen von Cohen-Macaulay Algebren, J. Reine Angew. Math. 318 (1980), 83–105 (German). MR 579384, DOI 10.1515/crll.1980.318.83
- Jürgen Herzog and Matthew Miller, Gorenstein ideals of deviation two, Comm. Algebra 13 (1985), no. 9, 1977–1990. MR 795487, DOI 10.1080/00927878508823261
- J. Herzog, A. Simis, and W. V. Vasconcelos, Koszul homology and blowing-up rings, Commutative algebra (Trento, 1981) Lecture Notes in Pure and Appl. Math., vol. 84, Dekker, New York, 1983, pp. 79–169. MR 686942
- Craig Huneke, Linkage and the Koszul homology of ideals, Amer. J. Math. 104 (1982), no. 5, 1043–1062. MR 675309, DOI 10.2307/2374083
- Craig Huneke, Strongly Cohen-Macaulay schemes and residual intersections, Trans. Amer. Math. Soc. 277 (1983), no. 2, 739–763. MR 694386, DOI 10.1090/S0002-9947-1983-0694386-5
- C. Huneke, Numerical invariants of liaison classes, Invent. Math. 75 (1984), no. 2, 301–325. MR 732549, DOI 10.1007/BF01388567
- Craig Huneke, The Koszul homology of an ideal, Adv. in Math. 56 (1985), no. 3, 295–318. MR 792709, DOI 10.1016/0001-8708(85)90037-4
- Craig Huneke and Bernd Ulrich, Divisor class groups and deformations, Amer. J. Math. 107 (1985), no. 6, 1265–1303 (1986). MR 815763, DOI 10.2307/2374407
- Craig Huneke and Bernd Ulrich, The structure of linkage, Ann. of Math. (2) 126 (1987), no. 2, 277–334. MR 908149, DOI 10.2307/1971402
- Craig Huneke and Bernd Ulrich, Algebraic linkage, Duke Math. J. 56 (1988), no. 3, 415–429. MR 948528, DOI 10.1215/S0012-7094-88-05618-9
- Craig Huneke and Bernd Ulrich, Minimal linkage and the Gorenstein locus of an ideal, Nagoya Math. J. 109 (1988), 159–167. MR 931958, DOI 10.1017/S002776300000283X
- Craig Huneke and Bernd Ulrich, Residual intersections, J. Reine Angew. Math. 390 (1988), 1–20. MR 953673, DOI 10.1515/crll.1988.390.1
- Ernst Kunz, Almost complete intersections are not Gorenstein rings, J. Algebra 28 (1974), 111–115. MR 330158, DOI 10.1016/0021-8693(74)90025-8
- Andrew R. Kustin and Matthew Miller, Deformation and linkage of Gorenstein algebras, Trans. Amer. Math. Soc. 284 (1984), no. 2, 501–534. MR 743730, DOI 10.1090/S0002-9947-1984-0743730-X
- Andrew R. Kustin and Matthew Miller, Tight double linkage of Gorenstein algebras, J. Algebra 95 (1985), no. 2, 384–397. MR 801274, DOI 10.1016/0021-8693(85)90110-3
- Joseph Lipman, Rings with discrete divisor class group: theorem of Danilov-Samuel, Amer. J. Math. 101 (1979), no. 1, 203–211. MR 527832, DOI 10.2307/2373945
- D. G. Northcott, Lessons on rings, modules and multiplicities, Cambridge University Press, London, 1968. MR 0231816
- C. Peskine and L. Szpiro, Dimension projective finie et cohomologie locale. Applications à la démonstration de conjectures de M. Auslander, H. Bass et A. Grothendieck, Inst. Hautes Études Sci. Publ. Math. 42 (1973), 47–119 (French). MR 374130
- C. Peskine and L. Szpiro, Liaison des variétés algébriques. I, Invent. Math. 26 (1974), 271–302 (French). MR 364271, DOI 10.1007/BF01425554 J.-P. Serre, Sur les modules projectifs, Séminaire Dubreil, November 1960/61.
- A. Simis and W. V. Vasconcelos, The syzygies of the conormal module, Amer. J. Math. 103 (1981), no. 2, 203–224. MR 610474, DOI 10.2307/2374214
- Aron Simis and Wolmer V. Vasconcelos, On the dimension and integrality of symmetric algebras, Math. Z. 177 (1981), no. 3, 341–358. MR 618200, DOI 10.1007/BF01162067
- Bernd Ulrich, Liaison and deformation, J. Pure Appl. Algebra 39 (1986), no. 1-2, 165–175. MR 816897, DOI 10.1016/0022-4049(86)90143-X
- R. Fossum, W. Haboush, M. Hochster, and V. Lakshmibai (eds.), Invariant theory, Contemporary Mathematics, vol. 88, American Mathematical Society, Providence, RI, 1989. MR 999977, DOI 10.1090/conm/088
- Wolmer V. Vasconcelos, Koszul homology and the structure of low codimension Cohen-Macaulay ideals, Trans. Amer. Math. Soc. 301 (1987), no. 2, 591–613. MR 882705, DOI 10.1090/S0002-9947-1987-0882705-X
- Junzo Watanabe, A note on Gorenstein rings of embedding codimension three, Nagoya Math. J. 50 (1973), 227–232. MR 319985
Additional Information
- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 318 (1990), 1-42
- MSC: Primary 13H10; Secondary 13C05, 13D10
- DOI: https://doi.org/10.1090/S0002-9947-1990-0964902-8
- MathSciNet review: 964902