Existence of weak solutions for the Navier-Stokes equations with initial data in $L^ p$
HTML articles powered by AMS MathViewer
- by Calixto P. Calderón PDF
- Trans. Amer. Math. Soc. 318 (1990), 179-200 Request permission
Addendum: Trans. Amer. Math. Soc. 318 (1990), 201-207.
Abstract:
The existence of weak solutions for the Navier-Stokes equations for the infinite cylinder with initial data in ${L^p}$ is considered in this paper. We study the case of initial data in ${L^p}({R^n})$, $2 < p < n$, and $n = 3,4$. An existence theorem is proved covering these important cases and therefore, the "gap" between the Hopf-Leray theory $(p = 2)$ and that of Fabes-Jones-Riviere $(p > n)$ is bridged. The existence theorem gives a new method of constructing global solutions. The cases $p = n$ are treated at the end of the paper.References
- A. Benedek and R. Panzone, The space $L^{p}$, with mixed norm, Duke Math. J. 28 (1961), 301–324. MR 126155, DOI 10.1215/S0012-7094-61-02828-9
- E. B. Fabes and N. M. Rivière, Singular integrals with mixed homogeneity, Studia Math. 27 (1966), 19–38. MR 209787, DOI 10.4064/sm-27-1-19-38
- E. B. Fabes, B. F. Jones, and N. M. Rivière, The initial value problem for the Navier-Stokes equations with data in $L^{p}$, Arch. Rational Mech. Anal. 45 (1972), 222–240. MR 316915, DOI 10.1007/BF00281533
- E. B. Fabes, J. E. Lewis, and N. M. Rivière, Singular integrals and hydrodynamic potentials, Amer. J. Math. 99 (1977), no. 3, 601–625. MR 454745, DOI 10.2307/2373932
- E. B. Fabes, J. E. Lewis, and N. M. Rivière, Boundary value problems for the Navier-Stokes equations, Amer. J. Math. 99 (1977), no. 3, 626–668. MR 460928, DOI 10.2307/2373933
- Eberhard Hopf, Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen, Math. Nachr. 4 (1951), 213–231 (German). MR 50423, DOI 10.1002/mana.3210040121
- O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Mathematics and its Applications, Vol. 2, Gordon and Breach Science Publishers, New York-London-Paris, 1969. Second English edition, revised and enlarged; Translated from the Russian by Richard A. Silverman and John Chu. MR 0254401
- Jean Leray, Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math. 63 (1934), no. 1, 193–248 (French). MR 1555394, DOI 10.1007/BF02547354 C. W. Oseen, Neuere Methoden und Ergebnisse in der Hydrodinamik, Akademie Verlagsgessellsschaft, Leipzig, m.b.h. 1927, p. 68.
- Giovanni Prodi, Un teorema di unicità per le equazioni di Navier-Stokes, Ann. Mat. Pura Appl. (4) 48 (1959), 173–182 (Italian). MR 126088, DOI 10.1007/BF02410664
- James Serrin, The initial value problem for the Navier-Stokes equations, Nonlinear Problems (Proc. Sympos., Madison, Wis., 1962) Univ. Wisconsin Press, Madison, Wis., 1963, pp. 69–98. MR 0150444
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- Fred B. Weissler, The Navier-Stokes initial value problem in $L^{p}$, Arch. Rational Mech. Anal. 74 (1980), no. 3, 219–230. MR 591222, DOI 10.1007/BF00280539
Additional Information
- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 318 (1990), 179-200
- MSC: Primary 35Q10; Secondary 35D05, 76D05
- DOI: https://doi.org/10.1090/S0002-9947-1990-0968416-0
- MathSciNet review: 968416