Some weighted inequalities on product domains
HTML articles powered by AMS MathViewer
- by Henry Lin PDF
- Trans. Amer. Math. Soc. 318 (1990), 69-85 Request permission
Abstract:
We extend the results of R. Fefferman [3] on the bidisc to higher product domains via induction. As an application, we extend the weighted inequality for Calderon-Zygmund operators on the bidisc to higher product domains, and we also extend the result of the Littlewood-Paley operator corresponding to the arbitrary disjoint rectangles to the weighted case.References
-
José L. Rubio de Francia, A Littlewood-Paley inequality for arbitrary intervals, Mittag-Leffler Institute, Report No. 18, 1983.
- Jean-Lin Journé, Calderón-Zygmund operators on product spaces, Rev. Mat. Iberoamericana 1 (1985), no. 3, 55–91. MR 836284, DOI 10.4171/RMI/15
- Robert Fefferman, Harmonic analysis on product spaces, Ann. of Math. (2) 126 (1987), no. 1, 109–130. MR 898053, DOI 10.2307/1971346
- C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107–115. MR 284802, DOI 10.2307/2373450
- José Luis Rubio de Francia, Factorization and extrapolation of weights, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 2, 393–395. MR 663793, DOI 10.1090/S0273-0979-1982-15047-9
- Jill Pipher, Journé’s covering lemma and its extension to higher dimensions, Duke Math. J. 53 (1986), no. 3, 683–690. MR 860666, DOI 10.1215/S0012-7094-86-05337-8
- R. Fefferman, $A^p$ weights and singular integrals, Amer. J. Math. 110 (1988), no. 5, 975–987. MR 961502, DOI 10.2307/2374700
Additional Information
- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 318 (1990), 69-85
- MSC: Primary 42B20; Secondary 26D15
- DOI: https://doi.org/10.1090/S0002-9947-1990-0970269-1
- MathSciNet review: 970269