Abelian and nondiscrete convergence groups on the circle
HTML articles powered by AMS MathViewer
- by A. Hinkkanen PDF
- Trans. Amer. Math. Soc. 318 (1990), 87-121 Request permission
Abstract:
A group $G$ of homeomorphisms of the unit circle onto itself is a convergence group if every sequence of elements of $G$ contains a subsequence, say ${{\text {g}}_n}$, such that either (i) ${{\text {g}}_n} \to {\text {g}}$ and ${\text {g}}_n^{ - 1} \to {{\text {g}}^{ - 1}}$ uniformly on the circle where ${\text {g}}$ is a homeomorphism, or (ii) ${{\text {g}}_n} \to {{\text {x}}_0}$ and ${\text {g}}_n^{ - 1} \to {{\text {y}}_0}$ uniformly on compact subsets of the complements of $\{ {{\text {y}}_0}\}$ and $\{ {{\text {x}}_0}\}$, respectively, for some points ${{\text {x}}_0}$ and ${{\text {y}}_0}$ of the circle (possibly ${{\text {x}}_0}{\text { = }}{{\text {y}}_0}$). For example, a group of $K$-quasisymmetric maps, for a fixed $K$, is a convergence group. We show that if $G$ is an abelian or nondiscrete convergence group, then there is a homeomorphism $f$ such that $f \circ G \circ {f^{ - 1}}$ is a group of Màbius transformations.References
- F. W. Gehring and G. J. Martin, Discrete quasiconformal groups. I, Proc. London Math. Soc. (3) 55 (1987), no. 2, 331–358. MR 896224, DOI 10.1093/plms/s3-55_{2}.331
- A. Hinkkanen, Uniformly quasisymmetric groups, Proc. London Math. Soc. (3) 51 (1985), no. 2, 318–338. MR 794115, DOI 10.1112/plms/s3-51.2.318
- A. Hinkkanen, The structure of certain quasisymmetric groups, Mem. Amer. Math. Soc. 83 (1990), no. 422, iv+87. MR 948926, DOI 10.1090/memo/0422
- Gaven J. Martin and Pekka Tukia, Convergence and Möbius groups, Holomorphic functions and moduli, Vol. II (Berkeley, CA, 1986) Math. Sci. Res. Inst. Publ., vol. 11, Springer, New York, 1988, pp. 113–140. MR 955836, DOI 10.1007/978-1-4613-9611-6_{9}
- Pekka Tukia, Homeomorphic conjugates of Fuchsian groups, J. Reine Angew. Math. 391 (1988), 1–54. MR 961162, DOI 10.1515/crll.1988.391.1
Additional Information
- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 318 (1990), 87-121
- MSC: Primary 30C62; Secondary 20H10, 22A99, 30F35
- DOI: https://doi.org/10.1090/S0002-9947-1990-1000145-X
- MathSciNet review: 1000145