Weighted norm estimates for the Fourier transform with a pair of weights
HTML articles powered by AMS MathViewer
- by Jan-Olov Strömberg and Richard L. Wheeden PDF
- Trans. Amer. Math. Soc. 318 (1990), 355-372 Request permission
Abstract:
We prove weighted norm inequalities of the form \[ {\left \| {\hat f} \right \|_{L_u^q}} \leq C{\left \| f \right \|_{H_\upsilon ^p}},\quad 0 < p \leq q < \infty ,\] for the Fourier transform on ${{\mathbf {R}}^n}$. For some weight functions $\upsilon$, the Hardy space $H_\upsilon ^p$ on the right can be replaced by $L_\upsilon ^p$. The proof depends on making an atomic decomposition of $f$ and using cancellation properties of the atoms.References
- Ernst Adams, On the identification of weighted Hardy spaces, Indiana Univ. Math. J. 32 (1983), no. 4, 477–489. MR 703279, DOI 10.1512/iumj.1983.32.32034
- John J. Benedetto and Hans Heinig, Fourier transform inequalities with measure weights, Adv. Math. 96 (1992), no. 2, 194–225. MR 1196988, DOI 10.1016/0001-8708(92)90055-P
- J. J. Benedetto, H. P. Heinig, and R. Johnson, Fourier inequalities with $A_p$-weights, General inequalities, 5 (Oberwolfach, 1986) Internat. Schriftenreihe Numer. Math., vol. 80, Birkhäuser, Basel, 1987, pp. 217–232. MR 1018148, DOI 10.1007/978-3-0348-7192-1_{1}7
- Hans P. Heinig, Weighted norm inequalities for classes of operators, Indiana Univ. Math. J. 33 (1984), no. 4, 573–582. MR 749315, DOI 10.1512/iumj.1984.33.33030
- Hans P. Heinig, Fourier operators on weighted Hardy spaces, Math. Proc. Cambridge Philos. Soc. 101 (1987), no. 1, 113–121. MR 877705, DOI 10.1017/S0305004100066457
- W. B. Jurkat and G. Sampson, On rearrangement and weight inequalities for the Fourier transform, Indiana Univ. Math. J. 33 (1984), no. 2, 257–270. MR 733899, DOI 10.1512/iumj.1984.33.33013
- Benjamin Muckenhoupt, Weighted norm inequalities for the Fourier transform, Trans. Amer. Math. Soc. 276 (1983), no. 2, 729–742. MR 688974, DOI 10.1090/S0002-9947-1983-0688974-X
- Cora Sadosky and Richard L. Wheeden, Some weighted norm inequalities for the Fourier transform of functions with vanishing moments, Trans. Amer. Math. Soc. 300 (1987), no. 2, 521–533. MR 876464, DOI 10.1090/S0002-9947-1987-0876464-4
- Elias M. Stein, Interpolation of linear operators, Trans. Amer. Math. Soc. 83 (1956), 482–492. MR 82586, DOI 10.1090/S0002-9947-1956-0082586-0
- Jan-Olov Strömberg and Alberto Torchinsky, Weighted Hardy spaces, Lecture Notes in Mathematics, vol. 1381, Springer-Verlag, Berlin, 1989. MR 1011673, DOI 10.1007/BFb0091154 J.-O. Stràmberg and R. L. Wheeden, Relations between $H_u^p$ and $L_u^p$ with polynomial weights, Trans. Amer. Math. Soc. 270 (1982), 439-467.
Additional Information
- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 318 (1990), 355-372
- MSC: Primary 42B10; Secondary 42B30
- DOI: https://doi.org/10.1090/S0002-9947-1990-1002924-1
- MathSciNet review: 1002924