## A one-phase hyperbolic Stefan problem in multi-dimensional space

HTML articles powered by AMS MathViewer

- by De Ning Li PDF
- Trans. Amer. Math. Soc.
**318**(1990), 401-415 Request permission

## Abstract:

The hyperbolic heat transfer model is obtained by replacing the classical Fourier’s law with the relaxation relation $\tau \vec qt + \vec q = - k\nabla T$. The sufficient and necessary conditions are derived for the local existence and uniqueness of classical solutions for multi-${\text {D}}$ Stefan problem of hyperbolic heat transfer model where phase change is accompanied with delay of latent heat storage.## References

- An Ton Bui and De Ning Li,
*Double shock fronts for hyperbolic systems of conservation laws in multidimensional space*, Trans. Amer. Math. Soc.**316**(1989), no. 1, 233–250. MR**935939**, DOI 10.1090/S0002-9947-1989-0935939-1 - Avner Friedman and Bei Hu,
*The Stefan problem for a hyperbolic heat equation*, J. Math. Anal. Appl.**138**(1989), no. 1, 249–279. MR**988334**, DOI 10.1016/0022-247X(89)90334-X - Lars Gȧrding,
*Le problème de la dérivée oblique pour l’équation des ondes*, C. R. Acad. Sci. Paris Sér. A-B**285**(1977), no. 12, A773–A775 (French, with English summary). MR**458511** - J. M. Greenberg,
*A hyperbolic heat transfer problem with phase changes*, IMA J. Appl. Math.**38**(1987), no. 1, 1–21. MR**983526**, DOI 10.1093/imamat/38.1.1 - Mitsuru Ikawa,
*A mixed problem for hyperbolic equations of second order with a first order derivative boundary condition*, Publ. Res. Inst. Math. Sci.**5**(1969), 119–147. MR**0277890**, DOI 10.2977/prims/1195194627 - D. D. Joseph and Luigi Preziosi,
*Heat waves*, Rev. Modern Phys.**61**(1989), no. 1, 41–73. MR**977943**, DOI 10.1103/RevModPhys.61.41 - Tosio Kato,
*The Cauchy problem for quasi-linear symmetric hyperbolic systems*, Arch. Rational Mech. Anal.**58**(1975), no. 3, 181–205. MR**390516**, DOI 10.1007/BF00280740 - De Ning Li,
*The nonlinear initial-boundary value problem and the existence of multidimensional shock wave for quasilinear hyperbolic-parabolic coupled systems*, Chinese Ann. Math. Ser. B**8**(1987), no. 2, 252–280. A Chinese summary appears in Chinese Ann. Math. Ser. A 8 (1987), no. 2, 271. MR**901389** - De Ning Li,
*The well-posedness of a hyperbolic Stefan problem*, Quart. Appl. Math.**47**(1989), no. 2, 221–231. MR**998097**, DOI 10.1090/S0033-569X-1989-0998097-9 - Andrew Majda,
*The existence of multidimensional shock fronts*, Mem. Amer. Math. Soc.**43**(1983), no. 281, v+93. MR**699241**, DOI 10.1090/memo/0281 - Andrew Majda and Enrique Thomann,
*Multidimensional shock fronts for second order wave equations*, Comm. Partial Differential Equations**12**(1987), no. 7, 777–828. MR**890631**, DOI 10.1080/03605308708820509 - Sadao Miyatake,
*Mixed problem for hyperbolic equation of second order*, J. Math. Kyoto Univ.**13**(1973), 435–487. MR**333467**, DOI 10.1215/kjm/1250523319 - Jeffrey B. Rauch and Frank J. Massey III,
*Differentiability of solutions to hyperbolic initial-boundary value problems*, Trans. Amer. Math. Soc.**189**(1974), 303–318. MR**340832**, DOI 10.1090/S0002-9947-1974-0340832-0 - R. E. Showalter and N. J. Walkington,
*A hyperbolic Stefan problem*, Quart. Appl. Math.**45**(1987), no. 4, 769–781. MR**917025**, DOI 10.1090/S0033-569X-1987-0917025-3 - A. D. Solomon, V. Alexiades, D. G. Wilson, and J. Drake,
*On the formulation of hyperbolic Stefan problems*, Quart. Appl. Math.**43**(1985), no. 3, 295–304. MR**814228**, DOI 10.1090/S0033-569X-1985-0814228-9
A. Solomon, V. Alexiades, D. Wilson and J. Greenberg,

*A hyperbolic Stefan problem with discontinuous temperature*, ORNL-6216, March, 1986.

## Additional Information

- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**318**(1990), 401-415 - MSC: Primary 35R35; Secondary 80A20
- DOI: https://doi.org/10.1090/S0002-9947-1990-1005936-7
- MathSciNet review: 1005936