Cells and the reflection representation of Weyl groups and Hecke algebras
HTML articles powered by AMS MathViewer
- by J. Matthew Douglass PDF
- Trans. Amer. Math. Soc. 318 (1990), 373-399 Request permission
Abstract:
Let $\mathcal {H}$ be the generic algebra of the finite crystallographic Coxeter group $W$, defined over the ring $\mathbb {Q}[{u^{1/2}},{u^{ - 1/2}}]$. First, the two-sided cell corresponding to the reflection representation of $\mathcal {H}$ is shown to consist of the nonidentity elements of $W$ having a unique reduced expression. Next, the matrix entries of this representation are computed in terms of certain Kazhdan-Lusztig polynomials. Finally, the Kazhdan-Lusztig polynomials just mentioned are described in case $W$ is of type ${{\text {A}}_{l - 1}}$ or ${{\text {B}}_l}$.References
- Anders Björner, Orderings of Coxeter groups, Combinatorics and algebra (Boulder, Colo., 1983) Contemp. Math., vol. 34, Amer. Math. Soc., Providence, RI, 1984, pp. 175–195. MR 777701, DOI 10.1090/conm/034/777701
- Brian D. Boe, Kazhdan-Lusztig polynomials for Hermitian symmetric spaces, Trans. Amer. Math. Soc. 309 (1988), no. 1, 279–294. MR 957071, DOI 10.1090/S0002-9947-1988-0957071-2
- C. W. Curtis, N. Iwahori, and R. Kilmoyer, Hecke algebras and characters of parabolic type of finite groups with $(B,$ $N)$-pairs, Inst. Hautes Études Sci. Publ. Math. 40 (1971), 81–116. MR 347996
- Vinay V. Deodhar, Some characterizations of Bruhat ordering on a Coxeter group and determination of the relative Möbius function, Invent. Math. 39 (1977), no. 2, 187–198. MR 435249, DOI 10.1007/BF01390109
- J. Matthew Douglass and Brad Shelton, On matrix coefficients of the reflection representation, Proc. Amer. Math. Soc. 105 (1989), no. 1, 62–65. MR 930242, DOI 10.1090/S0002-9939-1989-0930242-3
- David Kazhdan and George Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), no. 2, 165–184. MR 560412, DOI 10.1007/BF01390031 A. Lascoux and M. Schutzenberger, Polynômes de Kazhdan et Lusztig pour les grassmanniennes, Young tableaux and Schur functions in algebra and geometry (Toruń, 1980), Asterisque 87 (1981), 249-266.
- George Lusztig, On a theorem of Benson and Curtis, J. Algebra 71 (1981), no. 2, 490–498. MR 630610, DOI 10.1016/0021-8693(81)90188-5
- George Lusztig, Unipotent characters of the symplectic and odd orthogonal groups over a finite field, Invent. Math. 64 (1981), no. 2, 263–296. MR 629472, DOI 10.1007/BF01389170
- George Lusztig, Characters of reductive groups over a finite field, Annals of Mathematics Studies, vol. 107, Princeton University Press, Princeton, NJ, 1984. MR 742472, DOI 10.1515/9781400881772
- George Lusztig, Cells in affine Weyl groups, Algebraic groups and related topics (Kyoto/Nagoya, 1983) Adv. Stud. Pure Math., vol. 6, North-Holland, Amsterdam, 1985, pp. 255–287. MR 803338, DOI 10.2969/aspm/00610255
- George Lusztig, Cells in affine Weyl groups. II, J. Algebra 109 (1987), no. 2, 536–548. MR 902967, DOI 10.1016/0021-8693(87)90154-2
- G. Lusztig, Leading coefficients of character values of Hecke algebras, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986) Proc. Sympos. Pure Math., vol. 47, Amer. Math. Soc., Providence, RI, 1987, pp. 235–262. MR 933415, DOI 10.1007/bf01389157
- Hemant Kumar Tiwari, Reflection representations of Hecke algebras of certain Weyl groups, J. Algebra 120 (1989), no. 1, 224–245. MR 977868, DOI 10.1016/0021-8693(89)90196-8
Additional Information
- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 318 (1990), 373-399
- MSC: Primary 20G05
- DOI: https://doi.org/10.1090/S0002-9947-1990-1035211-6
- MathSciNet review: 1035211