## Cells and the reflection representation of Weyl groups and Hecke algebras

HTML articles powered by AMS MathViewer

- by J. Matthew Douglass PDF
- Trans. Amer. Math. Soc.
**318**(1990), 373-399 Request permission

## Abstract:

Let $\mathcal {H}$ be the generic algebra of the finite crystallographic Coxeter group $W$, defined over the ring $\mathbb {Q}[{u^{1/2}},{u^{ - 1/2}}]$. First, the two-sided cell corresponding to the reflection representation of $\mathcal {H}$ is shown to consist of the nonidentity elements of $W$ having a unique reduced expression. Next, the matrix entries of this representation are computed in terms of certain Kazhdan-Lusztig polynomials. Finally, the Kazhdan-Lusztig polynomials just mentioned are described in case $W$ is of type ${{\text {A}}_{l - 1}}$ or ${{\text {B}}_l}$.## References

- Anders Björner,
*Orderings of Coxeter groups*, Combinatorics and algebra (Boulder, Colo., 1983) Contemp. Math., vol. 34, Amer. Math. Soc., Providence, RI, 1984, pp. 175–195. MR**777701**, DOI 10.1090/conm/034/777701 - Brian D. Boe,
*Kazhdan-Lusztig polynomials for Hermitian symmetric spaces*, Trans. Amer. Math. Soc.**309**(1988), no. 1, 279–294. MR**957071**, DOI 10.1090/S0002-9947-1988-0957071-2 - C. W. Curtis, N. Iwahori, and R. Kilmoyer,
*Hecke algebras and characters of parabolic type of finite groups with $(B,$ $N)$-pairs*, Inst. Hautes Études Sci. Publ. Math.**40**(1971), 81–116. MR**347996** - Vinay V. Deodhar,
*Some characterizations of Bruhat ordering on a Coxeter group and determination of the relative Möbius function*, Invent. Math.**39**(1977), no. 2, 187–198. MR**435249**, DOI 10.1007/BF01390109 - J. Matthew Douglass and Brad Shelton,
*On matrix coefficients of the reflection representation*, Proc. Amer. Math. Soc.**105**(1989), no. 1, 62–65. MR**930242**, DOI 10.1090/S0002-9939-1989-0930242-3 - David Kazhdan and George Lusztig,
*Representations of Coxeter groups and Hecke algebras*, Invent. Math.**53**(1979), no. 2, 165–184. MR**560412**, DOI 10.1007/BF01390031
A. Lascoux and M. Schutzenberger, - George Lusztig,
*On a theorem of Benson and Curtis*, J. Algebra**71**(1981), no. 2, 490–498. MR**630610**, DOI 10.1016/0021-8693(81)90188-5 - George Lusztig,
*Unipotent characters of the symplectic and odd orthogonal groups over a finite field*, Invent. Math.**64**(1981), no. 2, 263–296. MR**629472**, DOI 10.1007/BF01389170 - George Lusztig,
*Characters of reductive groups over a finite field*, Annals of Mathematics Studies, vol. 107, Princeton University Press, Princeton, NJ, 1984. MR**742472**, DOI 10.1515/9781400881772 - George Lusztig,
*Cells in affine Weyl groups*, Algebraic groups and related topics (Kyoto/Nagoya, 1983) Adv. Stud. Pure Math., vol. 6, North-Holland, Amsterdam, 1985, pp. 255–287. MR**803338**, DOI 10.2969/aspm/00610255 - George Lusztig,
*Cells in affine Weyl groups. II*, J. Algebra**109**(1987), no. 2, 536–548. MR**902967**, DOI 10.1016/0021-8693(87)90154-2 - G. Lusztig,
*Leading coefficients of character values of Hecke algebras*, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986) Proc. Sympos. Pure Math., vol. 47, Amer. Math. Soc., Providence, RI, 1987, pp. 235–262. MR**933415**, DOI 10.1007/bf01389157 - Hemant Kumar Tiwari,
*Reflection representations of Hecke algebras of certain Weyl groups*, J. Algebra**120**(1989), no. 1, 224–245. MR**977868**, DOI 10.1016/0021-8693(89)90196-8

*Polynômes de Kazhdan et Lusztig pour les grassmanniennes, Young tableaux and Schur functions in algebra and geometry (Toruń*, 1980), Asterisque

**87**(1981), 249-266.

## Additional Information

- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**318**(1990), 373-399 - MSC: Primary 20G05
- DOI: https://doi.org/10.1090/S0002-9947-1990-1035211-6
- MathSciNet review: 1035211