Hamilton-Jacobi equations with state constraints
HTML articles powered by AMS MathViewer
- by I. Capuzzo-Dolcetta and P.-L. Lions
- Trans. Amer. Math. Soc. 318 (1990), 643-683
- DOI: https://doi.org/10.1090/S0002-9947-1990-0951880-0
- PDF | Request permission
Abstract:
In the present paper we consider Hamilton-Jacobi equations of the form $H(x,u,\nabla u) = 0,\;x \in \Omega$, where $\Omega$ is a bounded open subset of ${R^n},H$ is a given continuous real-valued function of $(x,s,p) \in \Omega \times R \times {R^n}$ and $\nabla u$ is the gradient of the unknown function $u$. We are interested in particular solutions of the above equation which are required to be supersolutions, in a suitable weak sense, of the same equation up to the boundary of $\Omega$. This requirement plays the role of a boundary condition. The main motivation for this kind of solution comes from deterministic optimal control and differential games problems with constraints on the state of the system, as well from related questions in constrained geodesics.References
- G. Barles, Existence results for first order Hamilton Jacobi equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 5, 325–340 (English, with French summary). MR 779871
- G. Barles, Remarques sur des résultats d’existence pour les équations de Hamilton-Jacobi du premier ordre, Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), no. 1, 21–32 (French, with English summary). MR 781590 G. Barles and P.-L. Lions, in preparation. A. Bensoussan, Méthodes de perturbation en controle optimal (to appear).
- I. Capuzzo-Dolcetta and M. G. Garroni, Oblique derivative problems and invariant measures, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 13 (1986), no. 4, 689–720. MR 880402
- M. G. Crandall, L. C. Evans, and P.-L. Lions, Some properties of viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 282 (1984), no. 2, 487–502. MR 732102, DOI 10.1090/S0002-9947-1984-0732102-X M. G. Crandall, H. Ishii and P.-L. Lions, Uniqueness of viscosity solutions revisited.
- Michael G. Crandall and Pierre-Louis Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 277 (1983), no. 1, 1–42. MR 690039, DOI 10.1090/S0002-9947-1983-0690039-8 —, On existence and uniqueness of solutions of Hamilton-Jacobi equations, Nonlinear Anal. (1985). —, Hamilton-Jacobi equations in infinite dimensions. Parts I, II, III, J. Funct. Anal. 62 (1985), 379-396; 65 (1986), 368-495; 68 (1986), 214-247; announced in C. R. Acad Sci. Paris Sér. I Math. 300 (1985), 67-70.
- Michael G. Crandall and Pierre-Louis Lions, Remarks on the existence and uniqueness of unbounded viscosity solutions of Hamilton-Jacobi equations, Illinois J. Math. 31 (1987), no. 4, 665–688. MR 909790 M. G. Crandall, P.-L. Lions and P. E. Souganidis, in preparation.
- Michael G. Crandall and Richard Newcomb, Viscosity solutions of Hamilton-Jacobi equations at the boundary, Proc. Amer. Math. Soc. 94 (1985), no. 2, 283–290. MR 784180, DOI 10.1090/S0002-9939-1985-0784180-6
- Francis Gimbert, Problèmes de Neumann quasilinéaires, J. Funct. Anal. 62 (1985), no. 1, 65–72 (French). MR 790770, DOI 10.1016/0022-1236(85)90019-9 R. Gonzalez and E. Rofman, On deterministic control problems: an approximation procedure for the optimal cost, Parts I and II, SIAM J. Control Optim. 23 (1985).
- Hitoshi Ishii, Perron’s method for Hamilton-Jacobi equations, Duke Math. J. 55 (1987), no. 2, 369–384. MR 894587, DOI 10.1215/S0012-7094-87-05521-9
- Hitoshi Ishii, Uniqueness of unbounded viscosity solution of Hamilton-Jacobi equations, Indiana Univ. Math. J. 33 (1984), no. 5, 721–748. MR 756156, DOI 10.1512/iumj.1984.33.33038
- Hitoshi Ishii, Remarks on existence of viscosity solutions of Hamilton-Jacobi equations, Bull. Fac. Sci. Engrg. Chuo Univ. 26 (1983), 5–24. MR 742691 —, Existence and uniqueness of solutions of Hamilton-Jacobi equations, preprint. —, A simple, direct proof of uniqueness for solutions of the Hamilton-Jacobi equations of Eikonal type, preprint. R. Jensen, work in preparation and personal communication.
- Jean-Michel Lasry and Pierre-Louis Lions, Équations elliptiques non linéaires avec conditions aux limites infinies et contrôle stochastique avec contraintes d’état, C. R. Acad. Sci. Paris Sér. I Math. 299 (1984), no. 7, 213–216 (French, with English summary). MR 762723
- Pierre-Louis Lions, Generalized solutions of Hamilton-Jacobi equations, Research Notes in Mathematics, vol. 69, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1982. MR 667669
- P.-L. Lions, Optimal control and viscosity solutions, Recent mathematical methods in dynamic programming (Rome, 1984) Lecture Notes in Math., vol. 1119, Springer, Berlin, 1985, pp. 94–112. MR 790691, DOI 10.1007/BFb0074782
- P.-L. Lions, Neumann type boundary conditions for Hamilton-Jacobi equations, Duke Math. J. 52 (1985), no. 4, 793–820. MR 816386, DOI 10.1215/S0012-7094-85-05242-1
- P.-L. Lions, Quelques remarques sur les problèmes elliptiques quasilinéaires du second ordre, J. Analyse Math. 45 (1985), 234–254 (French). MR 833413, DOI 10.1007/BF02792551 P.-L. Lions, G. Papanicolau and S. R. S. Varadhan, in preparation.
- P.-L. Lions and B. Perthame, Quasivariational inequalities and ergodic impulse control, SIAM J. Control Optim. 24 (1986), no. 4, 604–615. MR 846370, DOI 10.1137/0324036 B. Perthame and R. Sanders, The Neumann problem for fully nonlinear second order singular pertubation problems, M.R.C. Technical Summary Report, Univ. of Wisconsin-Madison, 1986.
- Maurice Robin, Long-term average cost control problems for continuous time Markov processes: a survey, Acta Appl. Math. 1 (1983), no. 3, 281–299. MR 727156, DOI 10.1007/BF00046603
- Maurice Robin, On some impulse control problems with long run average cost, SIAM J. Control Optim. 19 (1981), no. 3, 333–358. MR 613099, DOI 10.1137/0319020
- Halil Mete Soner, Optimal control with state-space constraint. I, SIAM J. Control Optim. 24 (1986), no. 3, 552–561. MR 838056, DOI 10.1137/0324032
- Panagiotis E. Souganidis, Existence of viscosity solutions of Hamilton-Jacobi equations, J. Differential Equations 56 (1985), no. 3, 345–390. MR 780496, DOI 10.1016/0022-0396(85)90084-1
- I. Capuzzo-Dolcetta and J.-L. Menaldi, On the deterministic optimal stopping time problem in the ergodic case, Theory and applications of nonlinear control systems (Stockholm, 1985) North-Holland, Amsterdam, 1986, pp. 453–460. MR 935395
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 318 (1990), 643-683
- MSC: Primary 49C20; Secondary 35F20
- DOI: https://doi.org/10.1090/S0002-9947-1990-0951880-0
- MathSciNet review: 951880