Hausdorff dimension of harmonic measures on negatively curved manifolds
HTML articles powered by AMS MathViewer
- by Yuri Kifer and François Ledrappier
- Trans. Amer. Math. Soc. 318 (1990), 685-704
- DOI: https://doi.org/10.1090/S0002-9947-1990-0951889-7
- PDF | Request permission
Abstract:
We show by probabilistic means that harmonic measures on manifolds, whose curvature is sandwiched between two negative constants have positive Hausdorff dimensions. A lower bound for harmonic measures of open sets is derived, as well. We end with the results concerning the Hausdorff dimension of harmonic measures on universal covers of compact negatively curved manifolds.References
- D. V. Anosov, Geodesic flows on closed Riemannian manifolds of negative curvature, Trudy Mat. Inst. Steklov. 90 (1967), 209 (Russian). MR 0224110
- Michael T. Anderson and Richard Schoen, Positive harmonic functions on complete manifolds of negative curvature, Ann. of Math. (2) 121 (1985), no. 3, 429–461. MR 794369, DOI 10.2307/1971181 R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Math., vol. 470, Springer-Verlag, Berlin, 1985.
- Rufus Bowen, Symbolic dynamics for hyperbolic flows, Amer. J. Math. 95 (1973), 429–460. MR 339281, DOI 10.2307/2373793
- Rufus Bowen and David Ruelle, The ergodic theory of Axiom A flows, Invent. Math. 29 (1975), no. 3, 181–202. MR 380889, DOI 10.1007/BF01389848
- Isaac Chavel, Eigenvalues in Riemannian geometry, Pure and Applied Mathematics, vol. 115, Academic Press, Inc., Orlando, FL, 1984. Including a chapter by Burton Randol; With an appendix by Jozef Dodziuk. MR 768584
- Jeff Cheeger and David G. Ebin, Comparison theorems in Riemannian geometry, North-Holland Mathematical Library, Vol. 9, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975. MR 0458335
- Avner Friedman, Stochastic differential equations and applications. Vol. 1, Probability and Mathematical Statistics, Vol. 28, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 0494490
- Eberhard Hopf, Statistik der geodätischen Linien in Mannigfaltigkeiten negativer Krümmung, Ber. Verh. Sächs. Akad. Wiss. Leipzig Math.-Phys. Kl. 91 (1939), 261–304 (German). MR 1464
- Morris W. Hirsch and Charles C. Pugh, Smoothness of horocycle foliations, J. Differential Geometry 10 (1975), 225–238. MR 368077
- Nobuyuki Ikeda and Shinzo Watanabe, Stochastic differential equations and diffusion processes, 2nd ed., North-Holland Mathematical Library, vol. 24, North-Holland Publishing Co., Amsterdam; Kodansha, Ltd., Tokyo, 1989. MR 1011252
- Anatole Katok, Four applications of conformal equivalence to geometry and dynamics, Ergodic Theory Dynam. Systems 8$^*$ (1988), no. Charles Conley Memorial Issue, 139–152. MR 967635, DOI 10.1017/S0143385700009391
- Y. Kifer, Brownian motion and positive harmonic functions on complete manifolds of nonpositive curvature, From local times to global geometry, control and physics (Coventry, 1984/85) Pitman Res. Notes Math. Ser., vol. 150, Longman Sci. Tech., Harlow, 1986, pp. 187–232. MR 894531
- François Ledrappier, Propriété de Poisson et courbure négative, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), no. 5, 191–194 (French, with English summary). MR 903960
- F. Ledrappier, Ergodic properties of Brownian motion on covers of compact negatively-curve manifolds, Bol. Soc. Brasil. Mat. 19 (1988), no. 1, 115–140. MR 1018929, DOI 10.1007/BF02584822
- F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin’s entropy formula, Ann. of Math. (2) 122 (1985), no. 3, 509–539. MR 819556, DOI 10.2307/1971328
- Jürgen Moser, On Harnack’s theorem for elliptic differential equations, Comm. Pure Appl. Math. 14 (1961), 577–591. MR 159138, DOI 10.1002/cpa.3160140329
- James Serrin, On the Harnack inequality for linear elliptic equations, J. Analyse Math. 4 (1955/56), 292–308. MR 81415, DOI 10.1007/BF02787725
- Ja. G. Sinaĭ, Gibbs measures in ergodic theory, Uspehi Mat. Nauk 27 (1972), no. 4(166), 21–64 (Russian). MR 0399421
- Lai Sang Young, Dimension, entropy and Lyapunov exponents, Ergodic Theory Dynam. Systems 2 (1982), no. 1, 109–124. MR 684248, DOI 10.1017/s0143385700009615
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 318 (1990), 685-704
- MSC: Primary 58G32; Secondary 60J60
- DOI: https://doi.org/10.1090/S0002-9947-1990-0951889-7
- MathSciNet review: 951889