Two differential-difference equations arising in number theory
HTML articles powered by AMS MathViewer
- by Ferrell S. Wheeler
- Trans. Amer. Math. Soc. 318 (1990), 491-523
- DOI: https://doi.org/10.1090/S0002-9947-1990-0963247-X
- PDF | Request permission
Abstract:
We survey many old and new results on solutions of the following pair of adjoint differential-difference equations: (1) \[ up’(u) = - ap(u) - bp(u - 1),\] (2) (\[ (uq(u))’ = aq(u) + bq(u + 1).\] We bring together scattered results usually proved only for specific $(a,b)$ pairs, while emphasizing the connections between the two equations. We also point out some of the ways these two equations are used in number theory. We giv s several new integral relationships between (1) and (2) and use them to prove a new application of (2) in number theory, namy el \[ \sum \limits _{\begin {array}{*{20}{c}} {1 < n \leqslant x} \\ {{P_2}(n) \leqslant {P_1}{{(n)}^{1/u}}} \\ \end {array} } {{{(\log {P_1}(n))}^\alpha } \sim {u^\alpha }f(u)x{{(\log x)}^\alpha }} \qquad (x \to \infty ,\;u \geqslant 1,\;\alpha \in {\mathbf {R}})\] where ${P_1}(n)$ and ${P_2}(n)$ are the first and second largest prime divisors of $n$ and $f(u)$ satisfies (2) with $(a,b) = (1 - \alpha , - 1)$.References
- M. Abramowitz and I. A. Stegun, Handbook of mathematical functions, Wiley, New York, 1972.
- Krishnaswami Alladi, The distribution of $\nu (n)$ in the sieve of Eratosthenes, Quart. J. Math. Oxford Ser. (2) 33 (1982), no. 130, 129–148. MR 657120, DOI 10.1093/qmath/33.2.129
- N. C. Ankeny and H. Onishi, The general sieve, Acta Arith. 10 (1964/1965), 31–62. MR 0167467, DOI 10.4064/aa-10-1-31-62
- P. Billingsley, On the distribution of large prime divisors, Period. Math. Hungar. 2 (1972), 283–289. MR 335462, DOI 10.1007/BF02018667
- Norman Bleistein and Richard A. Handelsman, Asymptotic expansions of integrals, 2nd ed., Dover Publications, Inc., New York, 1986. MR 863284
- N. G. De Bruijn, On the number of uncancelled elements in the sieve of Eratosthenes, Nederl. Akad. Wetensch., Proc. 53 (1950), 803–812 = Indagationes Math. 12, 247–256 (1950). MR 35785
- N. G. De Bruijn, On some Volterra integral equations of which all solutions are convergent, Nederl. Akad. Wetensch., Proc. 53 (1950), 813–821 = Indagationes Math. 12, 257–265 (1950). MR 35914
- N. G. de Bruijn, The asymptotic behaviour of a function occurring in the theory of primes, J. Indian Math. Soc. (N.S.) 15 (1951), 25–32. MR 43838
- N. G. de Bruijn, On the number of positive integers $\leq x$ and free of prime factors $>y$, Nederl. Akad. Wetensch. Proc. Ser. A 54 (1951), 50–60. MR 0046375
- N. G. de Bruijn and J. H. van Lint, Incomplete sums of multiplicative functions. I. II, Nederl. Akad. Wetensch. Proc. Ser. A 67=Indag. Math. 26 (1964), 339–347, 348–359. MR 0174530 A. A. Buchstab, Asymptotic estimates of a general number-theoretic function, (Russian, German summary), Mat. Sb. 44 (1937), 1237-1246.
- E. Rodney Canfield, The asymptotic behavior of the Dickman-de Bruijn function, Proceedings of the thirteenth Southeastern conference on combinatorics, graph theory and computing (Boca Raton, Fla., 1982), 1982, pp. 139–148. MR 725875
- Jean-Marie-François Chamayou, A probabilistic approach to a differential-difference equation arising in analytic number theory, Math. Comp. 27 (1973), 197–203. MR 336952, DOI 10.1090/S0025-5718-1973-0336952-X
- H. Diamond and H. Halberstam, The combinatorial sieve, Number theory (Ootacamund, 1984) Lecture Notes in Math., vol. 1122, Springer, Berlin, 1985, pp. 63–73. MR 797780, DOI 10.1007/BFb0075751
- H. Diamond, H. Halberstam, and H.-E. Richert, Combinatorial sieves of dimension exceeding one, J. Number Theory 28 (1988), no. 3, 306–346. MR 932379, DOI 10.1016/0022-314X(88)90046-7 —, A boundary value problem for a pair of differential delay equations related to sieve theory, I (to appear). G. Doetsch, Guide to the applications of the Laplace and $\mathcal {B}$-transforms, Van Nostrand Reinhold, New York, 1971.
- Gustav Doetsch, Introduction to the theory and application of the Laplace transformation, Springer-Verlag, New York-Heidelberg, 1974. Translated from the second German edition by Walter Nader. MR 0344810
- D. A. Goldston and Kevin S. McCurley, Sieving the positive integers by large primes, J. Number Theory 28 (1988), no. 1, 94–115. MR 925610, DOI 10.1016/0022-314X(88)90121-7
- D. A. Goldston and Kevin S. McCurley, Sieving the positive integers by small primes, Trans. Amer. Math. Soc. 307 (1988), no. 1, 51–62. MR 936804, DOI 10.1090/S0002-9947-1988-0936804-5 S. W. Golomb, L. R. Welch, and R. M. Goldstein, Cycles from nonlinear shift registers, Prog. Report No. 20-389, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, 1959.
- F. Grupp, On difference-differential equations in the theory of sieves, J. Number Theory 24 (1986), no. 2, 154–173. MR 863651, DOI 10.1016/0022-314X(86)90099-5
- Frieder Grupp and Hans-Egon Richert, Notes on functions connected with the sieve, Analysis 8 (1988), no. 1-2, 1–23. MR 954455, DOI 10.1524/anly.1988.8.12.1
- H. Halberstam and H.-E. Richert, Sieve methods, London Mathematical Society Monographs, No. 4, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1974. MR 0424730
- Douglas Hensley, The convolution powers of the Dickman function, J. London Math. Soc. (2) 33 (1986), no. 3, 395–406. MR 850955, DOI 10.1112/jlms/s2-33.3.395
- Adolf Hildebrand, On the number of positive integers $\leq x$ and free of prime factors $>y$, J. Number Theory 22 (1986), no. 3, 289–307. MR 831874, DOI 10.1016/0022-314X(86)90013-2
- Henryk Iwaniec, The sieve of Eratosthenes-Legendre, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 4 (1977), no. 2, 257–268. MR 453676
- Henryk Iwaniec, Rosser’s sieve, Acta Arith. 36 (1980), no. 2, 171–202. MR 581917, DOI 10.4064/aa-36-2-171-202 H. Iwaniec, J. van de Lune, and H. J. J. te Riele, The limits of Buchstab’s iteration sieve, Nederl. Akad. Wetensch. Indag. Math. Proc. A 83 (4) (1980), 409-417.
- Donald E. Knuth and Luis Trabb Pardo, Analysis of a simple factorization algorithm, Theoret. Comput. Sci. 3 (1976/77), no. 3, 321–348. MR 498355, DOI 10.1016/0304-3975(76)90050-5
- Jean-Marie De Koninck and Douglas Hensley, Sums taken over $n\leq x$ with prime factors $\leq y$ of $z^{\Omega (n)}$, and their derivatives with respect to $z$, J. Indian Math. Soc. (N.S.) 42 (1978), no. 1-4, 353–365 (1979). MR 559011
- B. V. Levin and A. S. Faĭnleĭb, Application of certain integral equations to questions of the theory of numbers, Uspehi Mat. Nauk 22 (1967), no. 3 (135), 119–197 (Russian). MR 0229600
- Helmut Maier, Primes in short intervals, Michigan Math. J. 32 (1985), no. 2, 221–225. MR 783576, DOI 10.1307/mmj/1029003189
- F. W. J. Olver, Asymptotics and special functions, Computer Science and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1974. MR 0435697
- M. P. van Ouwerkerk-Dijkers and J. Nuis, On the asymptotic behavior of the solution of a differential-difference equation arising in number theory, Math. Centrum Amsterdam Afd. Toegepaste Wisk. Rep. (1968), 9. MR 255945
- Daniel A. Rawsthorne, Selberg’s sieve estimate with a one sided hypothesis, Acta Arith. 41 (1982), no. 3, 281–289. MR 668914, DOI 10.4064/aa-41-3-281-289
- L. A. Shepp and S. P. Lloyd, Ordered cycle lengths in a random permutation, Trans. Amer. Math. Soc. 121 (1966), 340–357. MR 195117, DOI 10.1090/S0002-9947-1966-0195117-8
- Saburô Uchiyama, On a differential-difference equation, J. Fac. Sci. Hokkaido Univ. Ser. I 19 (1966), 59–65. MR 0204901 F. S. Wheeler, On two differential-difference equations arising in analytic number theory, Ph.D. thesis, University of Illinois, 1988.
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 318 (1990), 491-523
- MSC: Primary 11N35; Secondary 11N25, 11Q10, 34K05
- DOI: https://doi.org/10.1090/S0002-9947-1990-0963247-X
- MathSciNet review: 963247