Domain-independent upper bounds for eigenvalues of elliptic operators
HTML articles powered by AMS MathViewer
- by Stephen M. Hook
- Trans. Amer. Math. Soc. 318 (1990), 615-642
- DOI: https://doi.org/10.1090/S0002-9947-1990-0994167-2
- PDF | Request permission
Abstract:
Let $\Omega \subseteq {\mathbb {R}^m}$ be a bounded open set, $\partial \Omega$ its boundary and $\Delta$ the Laplacian on ${\mathbb {R}^m}$. Consider the elliptic differential equation: (1) \[ - \Delta u = \lambda u\quad {\text {in}}\;\Omega ;\qquad u = 0\quad {\text {on}}\;\partial \Omega .\] It is known that the eigenvalues, ${\lambda _i}$, of (1) satisfy (2) \[ \sum \limits _{i = 1}^n {\frac {{{\lambda _i}}} {{{\lambda _{n + 1}} - {\lambda _i}}}} \geqslant \frac {{mn}} {4}\] provided that ${\lambda _{n + 1}} > {\lambda _n}$. In this paper we abstract the method used by Hile and Protter [2] to establish (2) and apply the method to a variety of second-order elliptic problems, in particular, to all constant coefficient problems. We then consider a variety of higher-order problems and establish an extension of (2) for problem (1) where the Laplacian is replaced by a more general operator in a Hilbert space.References
- Zu Chi Chen, Inequalities for eigenvalues of a class of polyharmonic operators, Appl. Anal. 27 (1988), no. 4, 289–314. MR 936473, DOI 10.1080/00036818808839742
- G. N. Hile and M. H. Protter, Inequalities for eigenvalues of the Laplacian, Indiana Univ. Math. J. 29 (1980), no. 4, 523–538. MR 578204, DOI 10.1512/iumj.1980.29.29040
- G. N. Hile and R. Z. Yeh, Inequalities for eigenvalues of the biharmonic operator, Pacific J. Math. 112 (1984), no. 1, 115–133. MR 739143 S. M. Hook, Inequalities for eigenvalues of self-adjoint operators, Doctoral Dissertation, University of California, Berkeley, 1986.
- Stephen M. Hook, Inequalities for eigenvalues of selfadjoint operators, Trans. Amer. Math. Soc. 318 (1990), no. 1, 237–259. MR 943604, DOI 10.1090/S0002-9947-1990-0943604-8 —, Bounds for the fundamental frequencies of an elastic medium, Preprint.
- Bernhard Kawohl and Guido Sweers, Remarks on eigenvalues and eigenfunctions of a special elliptic system, Z. Angew. Math. Phys. 38 (1987), no. 5, 730–740 (English, with German summary). MR 917475, DOI 10.1007/BF00948293
- L. E. Payne, G. Pólya, and H. F. Weinberger, On the ratio of consecutive eigenvalues, J. Math. and Phys. 35 (1956), 289–298. MR 84696, DOI 10.1002/sapm1956351289
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 318 (1990), 615-642
- MSC: Primary 35J25; Secondary 35P15, 47F05
- DOI: https://doi.org/10.1090/S0002-9947-1990-0994167-2
- MathSciNet review: 994167