Almost split sequences and Zariski differentials
HTML articles powered by AMS MathViewer
- by Alex Martsinkovsky
- Trans. Amer. Math. Soc. 319 (1990), 285-307
- DOI: https://doi.org/10.1090/S0002-9947-1990-0955490-0
- PDF | Request permission
Abstract:
Let $R$ be a complete two-dimensional integrally closed analytic $k$-algebra. Associated with $R$ is the Auslander module $A$ from the fundamental sequence $0 \to {\omega _R} \to A \to R \to k \to 0$ and the module of Zariski differentials ${D_k}{(R)^{ * * }}$. We conjecture that these modules are isomorphic if and only if $R$ is graded. We prove this conjecture for (a) hypersurfaces $f = X_3^n + {\text {g}}({X_1},{X_2})$, (b) quotient singularities, and (c) $R$ graded Gorenstein.References
- Maurice Auslander, Rational singularities and almost split sequences, Trans. Amer. Math. Soc. 293 (1986), no. 2, 511–531. MR 816307, DOI 10.1090/S0002-9947-1986-0816307-7
- Maurice Auslander, Coherent functors, Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965) Springer, New York, 1966, pp. 189–231. MR 0212070
- Maurice Auslander, Almost split sequences and algebraic geometry, Representations of algebras (Durham, 1985) London Math. Soc. Lecture Note Ser., vol. 116, Cambridge Univ. Press, Cambridge, 1986, pp. 165–179. MR 897324
- M. Auslander and D. A. Buchsbaum, On ramification theory in noetherian rings, Amer. J. Math. 81 (1959), 749–765. MR 106929, DOI 10.2307/2372926
- M. Auslander and I. Reiten, Almost split sequences in dimension two, Adv. in Math. 66 (1987), no. 1, 88–118. MR 905928, DOI 10.1016/0001-8708(87)90031-4
- N. Bourbaki, Éléments de mathématique. Fasc. XXXI. Algèbre commutative. Chapitre 7: Diviseurs, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1314, Hermann, Paris, 1965 (French). MR 0260715 —, Algèbre commutative, Chapitres 8 et 9, Masson, Paris, 1983.
- David A. Buchsbaum and David Eisenbud, Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension $3$, Amer. J. Math. 99 (1977), no. 3, 447–485. MR 453723, DOI 10.2307/2373926
- David Eisenbud, Homological algebra on a complete intersection, with an application to group representations, Trans. Amer. Math. Soc. 260 (1980), no. 1, 35–64. MR 570778, DOI 10.1090/S0002-9947-1980-0570778-7
- Melvin Hochster, The Zariski-Lipman conjecture in the graded case, J. Algebra 47 (1977), no. 2, 411–424. MR 469917, DOI 10.1016/0021-8693(77)90232-0
- Masayoshi Nagata, Local rings, Robert E. Krieger Publishing Co., Huntington, N.Y., 1975. Corrected reprint. MR 0460307
- Isao Naruki, Some remarks on isolated singularity and their application to algebraic manifolds, Publ. Res. Inst. Math. Sci. 13 (1977/78), no. 1, 17–46. MR 0492381, DOI 10.2977/prims/1195190099
- C. Peskine and L. Szpiro, Liaison des variétés algébriques. I, Invent. Math. 26 (1974), 271–302 (French). MR 364271, DOI 10.1007/BF01425554 E. Platte, Operation von endlichen Gruppen auf Differentialen, Dissertation, Universität Osnabrück, Juni 1977.
- Erich Platte, Ein elementarer Beweis des Zariski-Lipman-Problems für graduierte analytische Algebren, Arch. Math. (Basel) 31 (1978/79), no. 2, 143–145 (German). MR 512730, DOI 10.1007/BF01226429
- Kyoji Saito, Quasihomogene isolierte Singularitäten von Hyperflächen, Invent. Math. 14 (1971), 123–142 (German). MR 294699, DOI 10.1007/BF01405360 G. Scheja, Differential modules of analytic rings, Lectures given at University of Genova, 1968.
- Günter Scheja and Uwe Storch, Differentielle Eigenschaften der Lokalisierungen analytischer Algebren, Math. Ann. 197 (1972), 137–170 (German). MR 306172, DOI 10.1007/BF01419591
- Günter Scheja and Hartmut Wiebe, Zur Chevalley-Zerlegung von Derivationen, Manuscripta Math. 33 (1980/81), no. 2, 159–176 (German, with English summary). MR 597817, DOI 10.1007/BF01316974
- Günter Scheja and Hartmut Wiebe, Über Derivationen von lokalen analytischen Algebren, Symposia Mathematica, Vol. XI (Convegno di Algebra Commutativa, INDAM, Rome, 1971 & Convegno di Geometria, INDAM, Rome, 1972) Academic Press, London, 1973, pp. 161–192 (German). MR 0338461 J.-P. Serre, Sur les modules projectifs, Sém. Dubreil, 1960/1961.
- John Tate, Homology of Noetherian rings and local rings, Illinois J. Math. 1 (1957), 14–27. MR 86072
- Bernard Teissier, The hunting of invariants in the geometry of discriminants, Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976) Sijthoff and Noordhoff, Alphen aan den Rijn, 1977, pp. 565–678. MR 0568901
- Jonathan M. Wahl, The Jacobian algebra of a graded Gorenstein singularity, Duke Math. J. 55 (1987), no. 4, 843–871. MR 916123, DOI 10.1215/S0012-7094-87-05540-2
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 319 (1990), 285-307
- MSC: Primary 14J17; Secondary 13C99, 14B05, 32B30
- DOI: https://doi.org/10.1090/S0002-9947-1990-0955490-0
- MathSciNet review: 955490