Hölder domains and Poincaré domains
HTML articles powered by AMS MathViewer
- by Wayne Smith and David A. Stegenga
- Trans. Amer. Math. Soc. 319 (1990), 67-100
- DOI: https://doi.org/10.1090/S0002-9947-1990-0978378-8
- PDF | Request permission
Abstract:
A domain $D \subset {R^d}$ of finite volume is said to be a $p$-Poincaré domain if there is a constant ${M_p}(D)$ so that \[ {\int \limits _D {|u - {u_D}|} ^p}dx \leq M_p^p(D){\int \limits _D {|\nabla u|} ^p}dx\] for all functions $u \in {C^1}(D)$. Here ${u_D}$ denotes the mean value of $u$ over $D$. Techniques involving the quasi-hyperbolic metric on $D$ are used to establish that various geometric conditions on $D$ are sufficient for $D$ to be a $p$-Poincaré domain. Domains considered include starshaped domains, generalizations of John domains and Hàlder domains. $D$ is a Hàlder domain provided that the quasi-hyperbolic distance from a fixed point ${x_0} \in D$ to $x$ is bounded by a constant multiple of the logarithm of the euclidean distance of $x$ to the boundary of $D$. The terminology is derived from the fact that in the plane, a simply connected Hàlder domain has a Hàlder continuous Riemann mapping function from the unit disk onto $D$. We prove that if $D$ is a Hàlder domain and $p \ge d$, then $D$ is a $p$-Poincaré domain. This answers a question of Axler and Shields regarding the image of the unit disk under a Hàlder continuous conformal mapping. We also consider geometric conditions which imply that the imbedding of the Sobolev space ${W^{1,p}}(D) \to {L^p}(D)$ is compact, and prove that this is the case for a Hàlder domain $D$.References
- Robert A. Adams, Sobolev spaces, Pure and Applied Mathematics, Vol. 65, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 0450957
- Charles J. Amick, Some remarks on Rellich’s theorem and the Poincaré inequality, J. London Math. Soc. (2) 18 (1978), no. 1, 81–93. MR 502660, DOI 10.1112/jlms/s2-18.1.81
- Sheldon Axler and Allen L. Shields, Univalent multipliers of the Dirichlet space, Michigan Math. J. 32 (1985), no. 1, 65–80. MR 777302, DOI 10.1307/mmj/1029003133
- Jochen Becker and Christian Pommerenke, Hölder continuity of conformal mappings and nonquasiconformal Jordan curves, Comment. Math. Helv. 57 (1982), no. 2, 221–225. MR 684114, DOI 10.1007/BF02565858
- F. W. Gehring and O. Martio, Lipschitz classes and quasiconformal mappings, Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 203–219. MR 802481, DOI 10.5186/aasfm.1985.1022
- F. W. Gehring and B. G. Osgood, Uniform domains and the quasihyperbolic metric, J. Analyse Math. 36 (1979), 50–74 (1980). MR 581801, DOI 10.1007/BF02798768
- F. W. Gehring and B. P. Palka, Quasiconformally homogeneous domains, J. Analyse Math. 30 (1976), 172–199. MR 437753, DOI 10.1007/BF02786713
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190, DOI 10.1007/978-3-642-61798-0
- D. H. Hamilton, On the Poincaré inequality, Complex Variables Theory Appl. 5 (1986), no. 2-4, 265–270. MR 846494, DOI 10.1080/17476938608814146
- Peter W. Jones, Extension theorems for BMO, Indiana Univ. Math. J. 29 (1980), no. 1, 41–66. MR 554817, DOI 10.1512/iumj.1980.29.29005 —, Quasiconformal mappings and extensions of functions in Sobolev space, Acta Math. 1-2 (1981), 71-88.
- Gaven J. Martin, Quasiconformal and bi-Lipschitz homeomorphisms, uniform domains and the quasihyperbolic metric, Trans. Amer. Math. Soc. 292 (1985), no. 1, 169–191. MR 805959, DOI 10.1090/S0002-9947-1985-0805959-2
- O. Martio, John domains, bi-Lipschitz balls and Poincaré inequality, Rev. Roumaine Math. Pures Appl. 33 (1988), no. 1-2, 107–112. MR 948443
- O. Martio and M. Vuorinen, Whitney cubes, $p$-capacity, and Minkowski content, Exposition. Math. 5 (1987), no. 1, 17–40. MR 880256
- Vladimir G. Maz’ja, Sobolev spaces, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1985. Translated from the Russian by T. O. Shaposhnikova. MR 817985, DOI 10.1007/978-3-662-09922-3
- Norman G. Meyers and James Serrin, $H=W$, Proc. Nat. Acad. Sci. U.S.A. 51 (1964), 1055–1056. MR 164252, DOI 10.1073/pnas.51.6.1055
- Benjamin Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226. MR 293384, DOI 10.1090/S0002-9947-1972-0293384-6 F. Rellich, Ein Satz über mittlere Konvergenz, Gàttingen Nachr. (1930), 30-35.
- Wayne Smith and David A. Stegenga, A geometric characterization of Hölder domains, J. London Math. Soc. (2) 35 (1987), no. 3, 471–480. MR 889369, DOI 10.1112/jlms/s2-35.3.471 —, Poincaré domains in the plane, Proceedings of R. Nevanlinna Colloq., 1987. S. G. Staples, ${L^p}$ averaging domains and the Poincaré inequality, Ann. Acad. Sci. Fenn. (to appear).
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 319 (1990), 67-100
- MSC: Primary 30C20; Secondary 26D10
- DOI: https://doi.org/10.1090/S0002-9947-1990-0978378-8
- MathSciNet review: 978378