Upper bounds for ergodic sums of infinite measure preserving transformations
HTML articles powered by AMS MathViewer
- by Jon Aaronson and Manfred Denker
- Trans. Amer. Math. Soc. 319 (1990), 101-138
- DOI: https://doi.org/10.1090/S0002-9947-1990-1024766-3
- PDF | Request permission
Abstract:
For certain conservative, ergodic, infinite measure preserving transformations $T$ we identify increasing functions $A$, for which \[ \limsup \limits _{n \to \infty } \frac {1} {{A(n)}}\sum \limits _{k = 1}^n {f \circ } {T^k} = \int _X {fd\mu } \quad {\text {a}}{\text {.e}}{\text {.}}\] holds for any nonnegative integrable function $f$. In particular the results apply to some Markov shifts and number-theoretic transformations, and include the other law of the iterated logarithm.References
- Jon Aaronson, Rational ergodicity and a metric invariant for Markov shifts, Israel J. Math. 27 (1977), no. 2, 93–123. MR 584018, DOI 10.1007/BF02761661
- Jon Aaronson, The asymptotic distributional behaviour of transformations preserving infinite measures, J. Analyse Math. 39 (1981), 203–234. MR 632462, DOI 10.1007/BF02803336
- Jon Aaronson, An ergodic theorem with large normalising constants, Israel J. Math. 38 (1981), no. 3, 182–188. MR 605376, DOI 10.1007/BF02760803
- Jon. Aaronson, Random $f$-expansions, Ann. Probab. 14 (1986), no. 3, 1037–1057. MR 841603
- E. Phillips and S. Varadhan (eds.), Ergodic theory, Courant Institute of Mathematical Sciences, New York University, New York, 1975. A seminar held at the Courant Institute of Mathematical Sciences, New York University, New York, 1973–1974; With contributions by S. Varadhan, E. Phillips, S. Alpern, N. Bitzenhofer and R. Adler. MR 0486431
- Roy L. Adler and Benjamin Weiss, The ergodic infinite measure preserving transformation of Boole, Israel J. Math. 16 (1973), 263–278. MR 335751, DOI 10.1007/BF02756706
- K. L. Chung and P. Erdös, On the application of the Borel-Cantelli lemma, Trans. Amer. Math. Soc. 72 (1952), 179–186. MR 45327, DOI 10.1090/S0002-9947-1952-0045327-5
- K. L. Chung and G. A. Hunt, On the zeros of $\sum ^n_1\pm 1$, Ann. of Math. (2) 50 (1949), 385–400. MR 29488, DOI 10.2307/1969462
- D. A. Darling and M. Kac, On occupation times for Markoff processes, Trans. Amer. Math. Soc. 84 (1957), 444–458. MR 84222, DOI 10.1090/S0002-9947-1957-0084222-7
- M. D. Donsker and S. R. S. Varadhan, On laws of the iterated logarithm for local times, Comm. Pure Appl. Math. 30 (1977), no. 6, 707–753. MR 461682, DOI 10.1002/cpa.3160300603 E. Hopf, Ergodentheorie, Chelsea, New York, 1948.
- I. A. Ibragimov and Yu. V. Linnik, Independent and stationary sequences of random variables, Wolters-Noordhoff Publishing, Groningen, 1971. With a supplementary chapter by I. A. Ibragimov and V. V. Petrov; Translation from the Russian edited by J. F. C. Kingman. MR 0322926
- N. C. Jain, Some limit theorems for a general Markov process, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 6 (1966), 206–223. MR 216580, DOI 10.1007/BF00531804
- Naresh C. Jain and William E. Pruitt, An invariance principle for the local time of a recurrent random walk, Z. Wahrsch. Verw. Gebiete 66 (1984), no. 1, 141–156. MR 743090, DOI 10.1007/BF00532801
- M. Kac, On the notion of recurrence in discrete stochastic processes, Bull. Amer. Math. Soc. 53 (1947), 1002–1010. MR 22323, DOI 10.1090/S0002-9904-1947-08927-8
- Shizuo Kakutani, Induced measure preserving transformations, Proc. Imp. Acad. Tokyo 19 (1943), 635–641. MR 14222
- Harry Kesten, An iterated logarithm law for local time, Duke Math. J. 32 (1965), 447–456. MR 178494
- Tien Yien Li and Fritz Schweiger, The generalized Boole’s transformation is ergodic, Manuscripta Math. 25 (1978), no. 2, 161–167. MR 499081, DOI 10.1007/BF01168607
- Miriam Lipschutz, On strong laws for certain types of events connected with sums of independent random variables, Ann. of Math. (2) 57 (1953), 318–330. MR 56225, DOI 10.2307/1969862
- Miriam Lipschutz, On strong bounds for sums of independent random variables which tend to a stable distribution, Trans. Amer. Math. Soc. 81 (1956), 135–154. MR 77015, DOI 10.1090/S0002-9947-1956-0077015-7
- Miriam Lipschutz, On the magnitude of the error in the approach to stable distributions. I, II, Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math. 18 (1956), 281–287, 288–294. MR 0081014
- E. Nummelin, A splitting technique for Harris recurrent Markov chains, Z. Wahrsch. Verw. Gebiete 43 (1978), no. 4, 309–318. MR 0501353, DOI 10.1007/BF00534764
- Eugene Seneta, Regularly varying functions, Lecture Notes in Mathematics, Vol. 508, Springer-Verlag, Berlin-New York, 1976. MR 0453936
- Maximilian Thaler, Transformations on $[0,\,1]$ with infinite invariant measures, Israel J. Math. 46 (1983), no. 1-2, 67–96. MR 727023, DOI 10.1007/BF02760623
- Michael J. Wichura, Functional laws of the iterated logarithm for the partial sums of I.I.D. random variables in the domain of attraction of a completely asymmetric stable law, Ann. Probability 2 (1974), 1108–1138. MR 358950, DOI 10.1214/aop/1176996501
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 319 (1990), 101-138
- MSC: Primary 28D05; Secondary 60F15
- DOI: https://doi.org/10.1090/S0002-9947-1990-1024766-3
- MathSciNet review: 1024766