The method of negative curvature: the Kobayashi metric on $\textbf {P}_ 2$ minus $4$ lines
HTML articles powered by AMS MathViewer
- by Michael J. Cowen
- Trans. Amer. Math. Soc. 319 (1990), 729-745
- DOI: https://doi.org/10.1090/S0002-9947-1990-0958888-X
- PDF | Request permission
Abstract:
Bloch, and later H. Cartan, showed that if ${H_1}, \ldots ,{H_{n + 2}}$ are $n + 2$ hyperplanes in general position in complex projective space ${{\mathbf {P}}_n}$, then ${{\mathbf {P}}_n} - {H_1} \cup \cdots \cup {H_{n + 2}}$ is (in current terminology) hyperbolic modulo $\Delta$, where $\Delta$ is the union of the hyperplanes $({H_{^1}} \cap \cdots \cap {H_k}) \oplus ({H_{k + 1}} \cap \cdots \cap {H_{n + 2}})$ for $2 \leqslant k \leqslant n$ and all permutations of the ${H_i}$. Their results were purely qualitative. For $n = 1$, the thrice-punctured sphere, it is possible to estimate the Kobayashi metric, but no estimates were known for $n \geqslant 2$. Using the method of negative curvature, we give an explicit model for the Kobayashi metric when $n = 2$.References
- Lars V. Ahlfors, An extension of Schwarz’s lemma, Trans. Amer. Math. Soc. 43 (1938), no. 3, 359–364. MR 1501949, DOI 10.1090/S0002-9947-1938-1501949-6
- Lars V. Ahlfors, The theory of meromorphic curves, Acta Soc. Sci. Fennicae. Nova Ser. A 3 (1941), no. 4, 31. MR 4309
- A. Bloch, Sur les systèmes de fonctions holomorphes à variétés linéaires lacunaires, Ann. Sci. École Norm. Sup. (3) 43 (1926), 309–362 (French). MR 1509274, DOI 10.24033/asens.772 E. Borel, Sur les zéros des fonctions entières, Acta Math. 20 (1896), 357-396.
- Robert Brody, Compact manifolds and hyperbolicity, Trans. Amer. Math. Soc. 235 (1978), 213–219. MR 470252, DOI 10.1090/S0002-9947-1978-0470252-3
- Henri Cartan, Sur les systèmes de fonctions holomorphes à variétés linéaires lacunaires et leurs applications, Ann. Sci. École Norm. Sup. (3) 45 (1928), 255–346 (French). MR 1509288, DOI 10.24033/asens.786
- James Carlson and Phillip Griffiths, A defect relation for equidimensional holomorphic mappings between algebraic varieties, Ann. of Math. (2) 95 (1972), 557–584. MR 311935, DOI 10.2307/1970871
- Shiing Shen Chern, Holomorphic curves in the plane, Differential geometry (in honor of Kentaro Yano), Kinokuniya, Tokyo, 1972, pp. 73–94. MR 0422693
- Michael Cowen, The Kobayashi metric on $\textbf {P}_{n}-(2^{n}+1)$ hyperplanes, Value distribution theory (Proc. Tulane Univ. Program, Tulane Univ., New Orleans, La., 1972-1973) Dekker, New York, 1974, pp. 205–223. MR 0352543
- Michael Cowen and Phillip Griffiths, Holomorphic curves and metrics of negative curvature, J. Analyse Math. 29 (1976), 93–153. MR 508156, DOI 10.1007/BF02789977
- Shoshichi Kobayashi and Peter Kiernan, Holomorphic mappings into projective space with lacunary hyperplanes, Nagoya Math. J. 50 (1973), 199–216. MR 326007, DOI 10.1017/S0027763000015646
- Shoshichi Kobayashi, Hyperbolic manifolds and holomorphic mappings, Pure and Applied Mathematics, vol. 2, Marcel Dekker, Inc., New York, 1970. MR 0277770
- Serge Lang, Hyperbolic and Diophantine analysis, Bull. Amer. Math. Soc. (N.S.) 14 (1986), no. 2, 159–205. MR 828820, DOI 10.1090/S0273-0979-1986-15426-1
- Serge Lang, Introduction to complex hyperbolic spaces, Springer-Verlag, New York, 1987. MR 886677, DOI 10.1007/978-1-4757-1945-1
- H. L. Royden, Remarks on the Kobayashi metric, Several complex variables, II (Proc. Internat. Conf., Univ. Maryland, College Park, Md., 1970) Lecture Notes in Math., Vol. 185, Springer, Berlin, 1971, pp. 125–137. MR 0304694
- Hermann Weyl, Meromorphic Functions and Analytic Curves, Annals of Mathematics Studies, No. 12, Princeton University Press, Princeton, N. J., 1943. MR 0009057
- Hung-hsi Wu, The equidistribution theory of holomorphic curves, Annals of Mathematics Studies, No. 64, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1970. MR 0273070
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 319 (1990), 729-745
- MSC: Primary 32H15; Secondary 32H25
- DOI: https://doi.org/10.1090/S0002-9947-1990-0958888-X
- MathSciNet review: 958888