Holomorphic maps which preserve intrinsic metrics or measures
HTML articles powered by AMS MathViewer
- by Ian Graham
- Trans. Amer. Math. Soc. 319 (1990), 787-803
- DOI: https://doi.org/10.1090/S0002-9947-1990-0967313-4
- PDF | Request permission
Abstract:
Suppose that $M$ is a domain in a taut complex manifold $M’$, and that $\Omega$ is a strictly convex bounded domain in ${{\mathbf {C}}^n}$. We consider the following question: given a holomorphic map $F:M \to \Omega$ which is an isometry for the infinitesimal Kobayashi metric at one point, must $F$ be biholomorphic? With an additional technical assumption on the behavior of the Kobayashi distance near points of $\partial M$, we show that $F$ gives a biholomorphism of $M$ with an open dense subset of $\Omega$. Moreover, $F$ extends as a homeomorphism from a larger domain $\tilde M$ to $\Omega$. We also give some related results—refinements of theorems of Bland and Graham and Fornaess and Sibony, and the answer to a question of Graham and Wu.References
- Theodore J. Barth, Taut and tight complex manifolds, Proc. Amer. Math. Soc. 24 (1970), 429–431. MR 252679, DOI 10.1090/S0002-9939-1970-0252679-6
- J. Bland and Ian Graham, On the Hausdorff measures associated to the Carathéodory and Kobayashi metrics, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 12 (1985), no. 4, 503–514 (1986). MR 848839 D. Burns and S. Krantz (to appear)
- L. A. Campbell, A. Howard, and T. Ochiai, Moving holomorphic disks off analytic subsets, Proc. Amer. Math. Soc. 60 (1976), 106–108 (1977). MR 425186, DOI 10.1090/S0002-9939-1976-0425186-0
- L. Andrew Campbell and Roy H. Ogawa, On preserving the Kobayashi pseudodistance, Nagoya Math. J. 57 (1975), 37–47. MR 372258
- I. M. Dektyarev, Criterion for the equivalence of hyperbolic manifolds, Funktsional. Anal. i Prilozhen. 15 (1981), no. 4, 73–74 (Russian). MR 639204
- Donald A. Eisenman, Intrinsic measures on complex manifolds and holomorphic mappings, Memoirs of the American Mathematical Society, No. 96, American Mathematical Society, Providence, R.I., 1970. MR 0259165
- John Erik Fornæss and Nessim Sibony, Increasing sequences of complex manifolds, Math. Ann. 255 (1981), no. 3, 351–360. MR 615855, DOI 10.1007/BF01450708
- John Erik Fornaess and Edgar Lee Stout, Polydiscs in complex manifolds, Math. Ann. 227 (1977), no. 2, 145–153. MR 435441, DOI 10.1007/BF01350191
- Ian Graham, Intrinsic measures on complex manifolds, Mat. Vesnik 38 (1986), no. 4, 475–488 (English, with Serbo-Croatian summary). Second international symposium on complex analysis and applications (Budva, 1986). MR 897139
- Ian Graham, Intrinsic measures and holomorphic retracts, Pacific J. Math. 130 (1987), no. 2, 299–311. MR 914103
- Ian Graham, Holomorphic mappings into strictly convex domains which are Kobayashi isometries at one point, Proc. Amer. Math. Soc. 105 (1989), no. 4, 917–921. MR 961406, DOI 10.1090/S0002-9939-1989-0961406-0
- Ian Graham and H. Wu, Some remarks on the intrinsic measures of Eisenman, Trans. Amer. Math. Soc. 288 (1985), no. 2, 625–660. MR 776396, DOI 10.1090/S0002-9947-1985-0776396-4
- Ian Graham and H. Wu, Characterizations of the unit ball $B^n$ in complex Euclidean space, Math. Z. 189 (1985), no. 4, 449–456. MR 786275, DOI 10.1007/BF01168151
- W. Kaup, Reelle Transformationsgruppen und invariante Metriken auf komplexen Räumen, Invent. Math. 3 (1967), 43–70 (German). MR 216030, DOI 10.1007/BF01425490
- Shoshichi Kobayashi, Hyperbolic manifolds and holomorphic mappings, Pure and Applied Mathematics, vol. 2, Marcel Dekker, Inc., New York, 1970. MR 0277770
- Shoshichi Kobayashi, Intrinsic distances, measures and geometric function theory, Bull. Amer. Math. Soc. 82 (1976), no. 3, 357–416. MR 414940, DOI 10.1090/S0002-9904-1976-14018-9
- László Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France 109 (1981), no. 4, 427–474 (French, with English summary). MR 660145
- L. Lempert, Holomorphic retracts and intrinsic metrics in convex domains, Anal. Math. 8 (1982), no. 4, 257–261 (English, with Russian summary). MR 690838, DOI 10.1007/BF02201775
- László Lempert, Intrinsic distances and holomorphic retracts, Complex analysis and applications ’81 (Varna, 1981) Publ. House Bulgar. Acad. Sci., Sofia, 1984, pp. 341–364. MR 883254
- Giorgio Patrizio, On holomorphic maps between domains in $\textbf {C}^n$, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 13 (1986), no. 2, 267–279. MR 876125
- Donald Alfred Pelles, Holomorphic maps which preserve intrinsic measure, Amer. J. Math. 97 (1975), 1–15. MR 367300, DOI 10.2307/2373658
- H. L. Royden, Remarks on the Kobayashi metric, Several complex variables, II (Proc. Internat. Conf., Univ. Maryland, College Park, Md., 1970) Lecture Notes in Math., Vol. 185, Springer, Berlin, 1971, pp. 125–137. MR 0304694 H. L. Royden and P. M. Wong, Carathéodory and Kobayashi metrics on convex domains, preprint.
- Edoardo Vesentini, Complex geodesics, Compositio Math. 44 (1981), no. 1-3, 375–394. MR 662466
- Edoardo Vesentini, Complex geodesics and holomorphic maps, Symposia Mathematica, Vol. XXVI (Rome, 1980) Academic Press, London-New York, 1982, pp. 211–230. MR 663034
- Jean-Pierre Vigué, Caractérisation des automorphismes analytiques d’un domaine convexe borné, C. R. Acad. Sci. Paris Sér. I Math. 299 (1984), no. 4, 101–104 (French, with English summary). MR 756530
- Jean-Pierre Vigué, Sur la caractérisation des automorphismes analytiques d’un domaine borné, Portugal. Math. 43 (1985/86), no. 4, 439–453 (1987) (French). MR 911450
- H. Wu, Normal families of holomorphic mappings, Acta Math. 119 (1967), 193–233. MR 224869, DOI 10.1007/BF02392083
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 319 (1990), 787-803
- MSC: Primary 32H15
- DOI: https://doi.org/10.1090/S0002-9947-1990-0967313-4
- MathSciNet review: 967313