Weighted inequalities for one-sided maximal functions
HTML articles powered by AMS MathViewer
- by F. J. Martín-Reyes, P. Ortega Salvador and A. de la Torre
- Trans. Amer. Math. Soc. 319 (1990), 517-534
- DOI: https://doi.org/10.1090/S0002-9947-1990-0986694-9
- PDF | Request permission
Abstract:
Let $M_g^ +$ be the maximal operator defined by \[ M_g^ + f(x) = \sup \limits _{h > 0} \left ( {\int _x^{x + h} {|f(t)|g(t)dt} } \right ){\left ( {\int _x^{x + h} {g(t)dt} } \right )^{ - 1}},\] where $g$ is a positive locally integrable function on ${\mathbf {R}}$. We characterize the pairs of nonnegative functions $(u,v)$ for which $M_g^ +$ applies ${L^p}(v)$ in ${L^p}(u)$ or in weak- ${L^p}(u)$. Our results generalize Sawyer’s (case $g = 1$) but our proofs are different and we do not use Hardy’s inequalities, which makes the proofs of the inequalities self-contained.References
- Kenneth F. Andersen and Benjamin Muckenhoupt, Weighted weak type Hardy inequalities with applications to Hilbert transforms and maximal functions, Studia Math. 72 (1982), no. 1, 9–26. MR 665888, DOI 10.4064/sm-72-1-9-26
- R. Coifman, Peter W. Jones, and José L. Rubio de Francia, Constructive decomposition of BMO functions and factorization of $A_{p}$ weights, Proc. Amer. Math. Soc. 87 (1983), no. 4, 675–676. MR 687639, DOI 10.1090/S0002-9939-1983-0687639-3
- José García-Cuerva, An extrapolation theorem in the theory of $A_{p}$ weights, Proc. Amer. Math. Soc. 87 (1983), no. 3, 422–426. MR 684631, DOI 10.1090/S0002-9939-1983-0684631-X
- José García-Cuerva and José L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland Mathematics Studies, vol. 116, North-Holland Publishing Co., Amsterdam, 1985. Notas de Matemática [Mathematical Notes], 104. MR 807149
- Benjamin Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226. MR 293384, DOI 10.1090/S0002-9947-1972-0293384-6
- Eric T. Sawyer, A characterization of a two-weight norm inequality for maximal operators, Studia Math. 75 (1982), no. 1, 1–11. MR 676801, DOI 10.4064/sm-75-1-1-11
- E. Sawyer, Weighted inequalities for the one-sided Hardy-Littlewood maximal functions, Trans. Amer. Math. Soc. 297 (1986), no. 1, 53–61. MR 849466, DOI 10.1090/S0002-9947-1986-0849466-0
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 319 (1990), 517-534
- MSC: Primary 42B25
- DOI: https://doi.org/10.1090/S0002-9947-1990-0986694-9
- MathSciNet review: 986694