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WEIGHTED INEQUALITIES FOR ONE-SIDED
MAXIMAL FUNCTIONS

F. ). MARTIN-REYES, P. ORTEGA SALVADOR, AND A. DE LA TORRE

ABSTRACT. Let M ;' be the maximal operator defined by

at 3 x+h d Xx+h 4 -1
gf(x)—il;g</x 1f(0)1g(1) t) (/x &(1) t) ,

where g is a positive locally integrable function on R. We characterize the
pairs of nonnegative functions (u, v) for which M ; applies LP(v) in LP(u)
or in weak- L? (1) . Our results generalize Sawyer’s (case g = 1 ) but our proofs
are different and we do not use Hardy’s inequalities, which makes the proofs of
the inequalities self-contained.

1. INTRODUCTION

In this paper we will study the operator M; acting on measurable real func-
tions on R defined by

h>0

x+h x+h -1
(1) M@ =sw [ If0lgwar (/ g(r)dz) ,

where g is a locally integrable and positive function. If g = 1 we obtain
the one-sided Hardy-Littlewood maximal operator which has been studied by
Sawyer [7].

We will characterize the pairs of weights (¢, v) such that M;’ is of weak and
strong type (p, p) with respect to the measures vdx and udx. Our results
include Sawyer’s as particular cases, but with different proofs. The proof of
the theorem about the weak type (p, p) (p > 1) is adapted from [1]. On the
other hand, the proof of the theorem about the strong type (p, p) is simpler
than the corresponding one in [7] (our proof follows the pattern of the proof in
[6]) and besides we do not use Hardy’s inequalities which makes the proofs of
the inequalities self-contained. We also include the weak type (1,1) that is not
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studied in [7]. Finally we give several results about the good weights for M;'
such as relations with Muckenhoupt’s classes, factorization, and extrapolation.

2. NOTATION AND MAIN RESULTS

Throughout this paper, g will be a positive locally integrable function and C
a positive constant not necessarily the same at each occurrence. If p > 1, then
its conjugate exponent will be denoted by p’, and for a Lebesgue measurable
set A4, x, will be its characteristic function and |A4| its measure.

We will say that a pair of nonnegative functions (u, v ) satisfies condition

A;(g), p > 1, if there exists a constant C > 0 such that for every y, x, b

with y<x <b,

2.1) /yxu(/xbgp'ay_lgc(/ybg)p,

where ¢ = v~ "/?~! (as usual, we consider 0- oo = 0).
Condition A, (g) is given by
(2.2) M (g7 <Cg v ae.,
where M g_ is the left maximal operator defined in the obvious way.

A pair of nonnegative functions (u, v) satisfies condition S; (g), p>1,
if there exists a constant C > O such that for every interval I = (a, b) with

f(_oo)a)u>0,

b b,
(2.3) / (M (1,87 0)'u < C/ g o < oo
a a
Our main results are the following three theorems.

Theorem 1. M; is of weak type (p,p), p > 1, with respect to the measures
vdx and udx ifand only if (u, v) satisfies A;(g).

Theorem 2. M; is of strong type (p,p), p>1, from L?(v) to L*(u) if and
only if (u,v) satisfies S, (g).

Theorem 3. If u=v and p > 1, A;(g) and S; (g) are equivalent conditions,
that is, the weak type (p, p) is equivalent to the strong type (p, p).
3. PROOF OF THEOREM | FOR p =1

We will need two lemmas:

Lemma 1. Let w be a positive increasing function defined on I = [a, b] (i.e.,
s <t implies w(s) < w(t)). Let f be a positive function on I. Suppose for
some positive number A

b b
/ gle/ g foreverytel.
t t

Then lfab gw < fab gfw.
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Proof of Lemma 1. Let B> 1. Let

b
={t€[a,b]:)./a gw
sl/atgw+Bw(t) [l/tbg—/tbfg]+8/tbfgw}.

Let T =infE (E is nonempty). We claimthat t=a. If a< 7,let n€ (a, 1)
such that Bw(n) > esssup{w(¢): a <t < 7}. We will prove that n € E, which
will contradict that 7 =infE . Since 7 € E we have

x/abgw sl/argw+Bw(r) lx/{bg—/rbfg

Now, the fact that w is increasing, the assumptions of the lemma and n < 7

give
b n T b b
A/ gwgi/ gw+l/ gw+Bw(71)l'1/ g—/ fgl
a a n T T

b T
+B/ fgw—B/ fgw.
n n

b
+B/ fgw.
T

If we use again that w is increasing and the election of 7, we obtain

A/ gw<,1/ gw + Bw(n l/ /fg]
+B/ fgw+Bw(n)[/ /fg]
=,1/a gw+Bw(n)[A/ﬂ g—/ﬂ fg +B/’lbfgw.

This means that n € E, a contradiction. Hence, 7 = a and then a € E, that

) A/fgwng(a) [x/abg—/abfg

Since the expression in brackets is nonpositive, we obtain A [ ab gw<B]f ab fgw.
Letting B tend to 1, we have the result.

b
+B/ few.
a

Lemma 2. If (u, v) satisfies A;L(g) and [a, b] is an interval, then there exists
an increasing function w on [a, b] such that

(1) w(s) < Cg'l(s)v(s) a.e.s€la,b].

(if) fjus [y ew.
Proof of Lemma 2. Let G(y) = Mg_(g"'ux[a,b])(y). The function G is lower
semicontinuous and finite a.e. by Af(g).
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Let w(x) = min, ., G(y). It is obvious that w is increasing and verifies
(i). To see (ii), let 0 < B < | and

b b
A={t€[a,b]:/ngB/uforeveryye[t,b]}.
y y

It is clear that A4 is a closed interval [7, b]. We will prove that 1 =a.
Suppose T > a. Since G is lower semicontinuous, there exists J > 0 such
that G(x) > BG(t) if x€[t-4, 7). For such an x,

w(x) = min GO) =mm{xgyxgr G(y), min G(y)}

<y<b
> min{BG(1), w(t)} > Bw(7).

By the definition of w, there exists y with 7 < y < b such that w(1) =
G(y). For every x € [1, 7], w(x) = w(tr) = G(y), and for every x € [1 —
J,1), w(x) > Bw(tr) = BG(y). Therefore, if x € [t —J, y] then w(x) >
BG(y). Hence

7 7 7
/ngBG(y)/ng/u forevery x e[t -9, 7].
pe X e

This means that 7 — § € A, which contradicts that 7 is the infimum of A4.
Therefore 7 = a and then | ab gw>B fab u. Letting B tend to 1 the proof is
finished.

Now, it is easy to prove that Af(g) is sufficient for the weak (1,1) inequality.
Let f be a positive function with support bounded from above, and let A, N >
0. Let O, y=(-N,o0)N{x: M;f(x) > A}. O, y isabounded open set and
therefore there exists a sequence of maximal pairwise disjoint finite intervals
{(a;, b,)} such that O, y = U(a,, b)) and [¥ fg > A [ g for every x €
(a T b j) . For each j, by Lemma 2, there exists an increasing function w ; on
la;, b ] such that
(3.1) w;(1) < Cg ' (Hu(1) ae. tela;,b)
and

bl bl
(3.2) / u< / gw;.
a/ a!

If we apply Lemma 1 to each w ;> we obtain

b, b,

(3.3) /1/ gw; 5/ gfwj.
al a!

Now (3.2), (3.3), and (3.1) give

b, b,
/ u=Z//uSZ/ gw;
O~ j e j Y4
-1 b -1 b, -1
<ATY | Tegfw,<CAT Y[ fu=Ca fu.
j v j U4 O, n
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Letting N tend to infinity we obtain |, M fxsay U S ci! ff;’: fu.
[ 4

Conversely, let us suppose that M; is of weak type (1,1) with respect to

the measures vdx and udx. For every natural number N we consider the
set Ey = {x: g"'(x)v(x) < N} and the function v, = YXE, - Let F, and

H,, be the Lebesgue sets of g']vN and X, respectively. It is clear that if
F =NyFyNnHy, then R—F| =0. Let x bein F, and let J, ¢ > 0
such that [7*; g < 2[* ;g. Now consider N with g 'xwx) < N. If

X
fn= g_IXENn(x‘He) and y€ (x —J, x) then

My fy() 2 /:HXEN (2/,:5 g>_l.

Therefore, by the weak type inequality,

[sae (o) ([T ) ([T)

If we let ¢ tend to zero and then N to infinity we get

/x:s u<2C (/x; g) (g—lv) (x).

Since J is an arbitrary positive number we obtain M g' u(x) < 2C (g"lv)(x)
for all x in F and thus for almost every x in R.

4. PROOF OF THEOREM 1 FOR p > 1

Suppose that (u, v) satisfies A;(g) and f(_oo’ by & =0 for every b in R.
Thenif y<x<b

@1 (/y“) (Abg”'a)p-ISC(/ybg)p,

with C independent of x,y, and b. Let o > 0. Multiplying both sides of
(4.1) by g(y)(f; g)™"™* ! and integrating with respect to y on (—oo, x) we
get

(/xbg”'a)p_l/_; 50) ([ ) (/y”g)_p—a" &

—a—1

sC/;g(y)(/ybg> dy

for every x. Computing the right-hand side of (4.2), we obtain

(4.3)
dySCofI (/bg) .

(4.2)

—p—a—1

(/xbg‘”a)p—l/_;g(y) (/yxu) (/ybg)
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Besides

x t b —p—a=l
(4.4) - / u(z)( 2(y) (/ g) dy) dt
—00 —o0 y

(4.3) and (4.4) give

(4.5) (/xbgpla)p_l /_xoo u(t) (/tb g) dt < C(p+a)a_] (/xb g>_a.

It is interesting to note that (4.5) holds even if g” ¢ is not locally integrable,
since A;(g) implies that if the integral of g° ‘o on [x,, x,] is infinite then
u(t) =0 for ae. r<x,.

Let f be a positive function with support bounded from above. For 4 > 0
and natural N, let O, y = {x: M f(x) > 2} N (=N, c0). Let (a,b) be a
connected component of O,. We have

—p—a

b b
(4.6) )./ g< / fg forevery x in (a, b).
X X

Let A= {x €[a, bl: f g"a—oo} If A#0,let xy=sup A;if 4=0,
let x, =a. Then f gp o < oo for every x > x, and it follows from A (8)
that u(x) =0 a.e. in [a, x,]. Thus fa u= fxou.

Let H and k& be the functions defined on (a, b) by

x b —p-a
H(x)=/ u(t)(/ g) dt and h(x (/g" )
a t
It is clear that H(x) =0 and h(x) = oo if x <X, and from (4.5) we get

b —a
(4.7) (h(x))’H(x) < C(p + a)a”" (/ g) for every x € [a, b].

On the other hand we have

(4.8) /,, ’ u(x)dx = /x ’ H'(x) ( /x ’ g)m dx.
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Integration by parts in the right-hand side of (4.8) gives

b b p \Pte—l
] u(x)dx = (p +a) / H(x)g(x) (/ g) dx
p—1
<cp+aia [ " h P (0)gx) ( / ’ g) dx,

by (4.7). Again integration by part gives

b b\’
/ u<Clp+a)ia (p“h"”(xo) ( / g)

—/xb h'(x)h_p_l(x) (/xb g)p dx) .

On the other hand, if we raise both sides of (4.6) to the pth power and apply
Holder’s inequality with exponents p and p’, after introducing suitable factors,

we obtain
< (/xbg)_p (/xbgf)p
< (/xb g) -p (/xb f‘”hv) (/xb g”lgh‘l’//l’)p/p,.

Computing the last integral of the above inequality gives us

/xb g oh?P = /xb gp,(t)a(t) (/tb gpla)_l/p dt

b , I/P’
=y ( |¢ a) = p'h(x).
X
Then (4.11) becomes

p
(4.13) ( / ’ g) <A PpP! ( / bf*’ hv) R~ (x).

If we set x = X, in (4.13), we obtain an inequality that allows us to majorize
the first addend of the right-hand side in (4.10), i.e.,

p
(4.14) 1P (x,) ( / ’ g) < )7Pp! ( / ’ f‘”hv) ' (x,).

0

(4.9)

(4.10)

(4.11)

(4.12)

To majorize the second addend we will use (4.13), the positivity of —A’, and
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integration by parts:

_/xb P 0Ok (x) (/xb g)p dx

0

b
(4.15) < —APpP! / R (x)h (x) ( / ’ f‘"hv) dx

=,1—pp'p-1 (_h"(xo)/bf‘”hv +/bf‘°v) .

Finally, (4.14), (4.15), and (4.10) give

b b b
(4.16) / U< CiP(p+a)p” o™ / o< CiP(p+a)p” o / .
a xo a

We have proved that

/ u<Ca’® v,
o

AN 0).,N
Letting N tend to infinity we obtain the weak inequality.

Everything we have just done is based on the assumption f(_oo 58 =00 for
every b. If it is not true we define g, = g if x > —n and g, = max{g, 1}
if x < —n, for every natural n. Every g, verifies ffm g, = o for every b,
and since (u, v) € 4, (g) we have that (u, g™’ g,v) satisfies 4, (g,). Then,
by what we have already shown

+o00
(4.17) / u< C,r"/ 117 g g™ v
{x: M;nf(x)>).} )

for every f, where C depends only on the constant of the A;(g) condition.
Now if we apply (4.17) to the functions f X( we have

—n,o00)
_ +00
/ usCci’ I v.
{x=-n: M] f(x)>1} -n
Letting n tend to infinity we obtain the weak type inequality.

Conversely, suppose that M; is of weak type (p, p) with respect to the
measures vdx and udx. Let x, y, b be given with x <y < b. For every
natural n,let h, = g” gx (& oten) {h,} is an increasing sequence with
.. ’ -1 _\—1/p-1 _ b b -1
limit g° 0. Let f=xy.5(8 V) 4 X . ooy and B, = [ h,(f, &) -
If z€[x, y] we have M; f(z) > B, . Then, the weak type inequality gives

y _ b
/ uSCB,,p/ h,,
x y

or equivalently
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Now the A;(g) condition follows from the monotone convergence theorem.

5. PROOF OF THEOREM 2

The necessity of Sp+ (g) for the two-norm inequality is trivial. For the con-
verse it will suffice to prove the strong type inequality for bounded positive f
in L”(v) with support bounded from above.

Let N be a positive integer. For k > 0 let

O, = {x €R: M f(x) >2"}n (=N, +0).

Each O, is an open set and, therefore, there exists a sequence {/ ik } ; of open
pairwise disjoint intervals with O, ={J nrn and such that

by o [
(5.1) / ngZ/ g foreveryxeljk—(Jk,bjk).

It is clear that sup; , |/;| < co. For every j and k let 4, = {x € I;:
fxﬂ‘g"a=oo}. If A]k;éQ let x; =sup 4;if 4, =3, let Xy =@

It is clear that fxf"g”a <ooifx>x; and u=0 ae x in (ay,x;) by
S, (g). Forevery j and k let

k+1
E; =Ijkn{x: M;f(x) <2} and Fp= X, jk)nE
The sets E ik are pairwise disjoint and for every k

(5.2) U =102 <M ) <2 N (=N, o).

Then

oo + P
/_ (M /) u—Z/ N +oo)n{x : z*<M;f(x>52“‘}(Mgﬁ ’
T o g v

By the definition of F, "« and by (5.1) we have that the last term is smaller than

or equal to
v 4

2PkZ/F u(x)(/bjkfg>p(/bjkg) dx.
AR x x

Therefore
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Let X =Z xZ xR and let w be the product measure v x v x m where v is
the counting measure on Z and m is the Lebesgue measure on R. Let ¢ be
the real function defined on X by

b o+ \? [ rbux
¢(j,k,x)=xpjk(x>u<x)(/ g"a) (/ g)

and let T be the linear operator

bjk ! bjk ! -
Th(j,k,x)=/ hgpa</ gpa) .

With these notations inequality (5.3) can be written in the following way:

-pP

(5.4) [Togtus? [ oy e do.

-N

If we prove that the operator T is bounded from L*(g’ ‘o dx) to LP(X, pdw),
we will get

[Togrreser [Tuen e e=c? [,

-N -

and, letting N tend to infinity, the proof will be finished.

To prove the boundedness of T we observe that it is obviously bounded in
L™ and by Marcinkiewickz’s interpolation theorem it will be enough to prove
the weak type (L,1), i.e., [ 4 wex : Ty k.o 940 < CA™' [T hg” o with
C the constant of condition (2.3).

Let 4, (4) = F;, n{x: Th(j,k,x)>A}. Thesets 4, are pairwise disjoint.
For each pair j, k, let Sy(A) = inf Ajk(l) and J,; = J, (4) =[s,(4), bjk) CIf
we pick up two of these intervals J ik and J,, , then they are either disjoint or
one of them is contained in the other. Also it is clear that each J;, verifies

(5.5) /hg"'azz/ &0
ij ij

Let {J;} be the maximal elements of the family {J, }. These maximal ele-
ments exist since the intervals J .« have uniformly bounded lengths. Also the
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intervals J; verify (5.5). Then

/ 9, k,x)dw
{(,k,x): Th(j,k,x)>A}

Bl (L7 (7]
<X X /A,-kmu(x) (/xbjk gpla)p (/xbjk g)-p dx

i {(k,j) s JDJIu}

> / (M (1, 8" 0) () u(x) dx
<c2/g"(x x)dx by (2.3),

and by (5.5) the last term is smaller than or equal to
ci! Z / h(x)g" (x)o(x)dx < CA~ / h(x)g" (x)o(x)dx.
This proves the weak (1,1) inequality for 7 and hence the proof of Theorem
2 is finished.
6. PROOF OF THEOREM 3
Suppose that u € A;(g) . Let I = (a, b) be an interval such that f_“co u>0.

1/p—1

This implies that | ab g’ 0 < oo where g =u" . Let x €I then there exist

h >0 with x + h € I such that

3. 1p—1 x+h o x+h -1
(6.1) Mg ows [e a(/ g) .
X X

For this 4 there exists ¢ with 0 <7 </ such that 2 [7"' g = [* *h ¢ . This ¢
verifies

X+t X+t -1
(6.2) [T&([Te) Mg o
(6.1) and (6.2) give

. Up—1 x+h x+h -1
(6.3) M (1,877 o) (x) < 4 / g"a(/ g) .

On the other hand, condition A;(g) for u gives

64 /::h o ( /xm g)-‘ <c ( /xm g)!"-l ( xx+t u)l_p,.
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Now (6.3) together with (6.4) gives

(6.5) M;(X,g'/”"a)(x) <c (/:+h g)p -1 (/:+I u) =y

< C(My (x,8u"
Raising to p and multiplying by u(x), we get

1 ’

(6.6) (M (2,87 0)(x)) u(x) < C(M (1,80 ) (%)) u(x).

But M is bounded in L* I(u) , because u € A (u) for every r > 1. Then
Jog g oy umdx < c [ o
i 1

Therefore u satisfies S (g).

The fact that S, (g) implies 4;(g) is a consequence of Theorems 1 and 2,
not only for a weight, but for pairs of weights. However, we are going to give
a direct proof. Suppose that the pair (u, v) satisfies S;' (g). Let a, b, and ¢

be real numbers with a < b < c¢. If the integral of g° o on [b, c] is equal to
infinity, then, by S;' (g), u(x)=0 ae. x in [a, b] and the inequality

b c o \p—1 c \P
[«(f o) =c([#)
a b a
is trivially satisfied.

Now suppose that the integral of g° ‘¢ over [b, c] is finite. We define a
possibly finite decreasing sequence by x, = b and x,,, the real number such
that

k+1 € o ¢ !
2 / g'o= ga
b Xk+l

X, ’ C ’
/kgpaz2k/gpa
—o0 b

otherwise the sequence finishes in x, .
Suppose first that the sequence is finite and x, is its last term. If r = 0, then

/ab“( (/ ) </gp ) dx</bu(x)(Mg*(x(,,’,,)g”"“a)(x))”dx

' 4 ’
SC/ngSZC/ng.
a b

if

This implies trivially A;( g).
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If r>0,let @ <x, and d’ <a. Then,
[ ([[e)" ([ #)
e ([ ([ 77
St [ (o) ([ ) s

X1

<27 / T UM (X 08 o)) dx
a

r—1
s [, 08" 00 () dx
oS k41

xk+l
4 —kp+k+1 € p ¢y
<c(y2 [&osc[ &
k=0 b b

Finally, suppose that the sequence is infinite and let d = lim x, . If d is
finite, then u =0 a.e. in (-0, d) by S;“ (g). So, whether d is finite or not
we have

b c -p ¢ -p c 4 \P
[l (fo) " ([ ¢'e) axs [[un([ )" (f &) e
a X b
Using the reasoning above with sum from 0 to co completes the proof.

7. FURTHER RESULTS

(A) Relations with Muckenhoupt’s Ap(g) classes and Sawyer’s Sp(g) classes.
Consider the weighted two-sided Hardy-Littlewood maximal operator defined

by
x+h x+h -1
M, f(x) = sup ( / mg) ( / g) .
h ,S>0 x-S xX—5
It is clear that the following relation holds:
1 - -
(7.1) 5(M;+Mg)§Mg§M;+Mg.

We have the following results for M, (see e.g. [5, 6]):

(i)Let 1<p<oo. M o is of weak type (p, p) with respect to the measures
vdx and udx if and only if the pair (u, v) satisfies 4,(g), ie.

A,(8): There exists C > 0 such that

(L) <)

for every interval (a, b) and p > 1.
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A,(g): There exists C > 0 such that Mg(g_'u) < Cg_]v a.e.

(i)Let l<p<oo. M o is of strong type (p, p) with respect to the measures
vdx and udx if and only if the pair (u, v) satisfies S,(8),1e.,

Sp(g): There exists C > 0 such that for every interval (a, b)

b .
1/p—1

/ |M,(X(a,5)8 ” U)IPMSC/ g o< oo.

a a

Of course, if u =v then A,(g) and Sp(g) are equivalent conditions.

It follows from these results, our theorems, and (7.1) that Ap(g) = A;(g) N
A;(g) (1<p<oo)and S,(g) = S;(g)nSp_(g) (1 <p < o0). We will now give
direct proofs of these equalities and so results (i) and (ii) will be consequences
of the results in this paper.

Theorem 4. (a) 4,(g) =4, (g) N4, (g) (1 <p<o0).

(b) S,(8)=S,(g)NS, (g) (1 <p<o0).

Proof of Theorem 4. (a) For p = 1 the equality is trivial by (7.1). Let 1 <p.
Since it is clear that A;(g) N Ap_(g) D A,(g) we only have to prove A4,(g) D
A7(g)N A, (g). Let (u,v) bein 4;(g)NA,(g),let a and ¢ be real num-

bers with a < ¢, let N be a natural number, define G,(x) = (g’ Ia)(x) if
(8" o)(x) < N and Gy(x) =0 otherwise. There exists 4 such that

c h c
/GN=2/ GN=2/ G,.
a a h
Then
¢ ¢ p—1 - h c p—1 € h p-l
[ol[a) 2 fel[a) o [+ [ o
a a a h h a

<zc(['e) by asie) and (e

Letting N tend to infinity we get 4 (g).
Finally, (b) follows clearly from (7.1).

(B) Factorization. We will give here a result that generalizes the theorem of

Coifman, Jones and Rubio de Francia [2] (see also [4]). As consequences, we
will obtain the factorization of A;(g) and A;(g) weights.

Theorem 5. Let F and G be two sublinear operators acting on measurable func-
tions of a measure space (X, M, u). For p > 1 let w,= {w: F is bounded in
LP(wdu)} and U,={u:Gis bounded in L”(udp)}. Let g be a positive func-
tion, and let W, = {w: G(g"‘w) < Cg"lw ae.} and U, = {u: F(g_lu) <
Cg 'uae). Then g 'w,u/™" > W;,ﬁg”Upl_p, ie, if w € W, and
gp,w_l/"_l € U, then there exist wy € W, and u, € U, such that w =

1
p—1 l-p
g wyuy .
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If F=G and g = 1 we obtain the above-mentioned result of Coifman,
Jones, and Rubio de Francia.

Proof. This proof follows the proof of Theorem 5.2 in [4], with the obvious
changes. Suppose 1 <p <2.Let we W, ng’ Upl"’ . We have to find v such
that

(i) vwe W, ie., G(g vw) < Cg 'lvw ae.,

(ii) gv'? ' eU,,ie, FO'"" < Cv'7! ae.

Let us define an operator S by S(u) = |G(g™ " uw)|w ™" g+ (F(Ju|'"~")y"~".
The operator S is positive, sublinear, and bounded on L’ ’ (w). So, S verifies
the conditions of Lemma 5.1 in [4], and it ensures the existence of such a v .
Then w, =vw and u, = gv'/Pt.

1

Corollary 1. w € A;(g) ifand only if w = g~ 'wyw, ™" with w, € 4, (g) and

w, € A, (g).

Proof. If in Theorem 5, we take F = M; and G=M g' , the classes of good

weights are, respectively W, = A;(g) and U, = 4,(g). Then Theorem 5
assures

g A (8)(47 (8) " > 4, ()N & (4, () .
But A;(g) ng’ (A;(g))l"p = A;(g) , and this proves the factorization of a

weight in 47(g).

Conversely, take w, € 4, (g) and w, € A, (g), and let w = g" 'wyw, 7.
Ifa<b<ec,

[o(fey
) /“b K (/,,cwl(5"'7.00)“”')”_1
<C (/ab (%) </:+;, g)p-l (/:+,,w1)1-,, dx)

([ ([ ()" )

for every 4, s > 0 by condition A;“(g) for w, and A, (g) for w, . In partic-
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ular, if A =c—Xx and s = x —a we obtain
b ;e p—1
/ w (/ & w-n/p—1>
a b
c p b ¢ I-p
sc([o) ([fusn ([=) " )
a a pe
c X 1-p’ Pl
X ( w,(x) (/ wo) dx)
b a

(1=p")(p—1)

(C).

Theorem 6. If w isin A (g) then there exists 5 > 0 such that
-6

/abg""w“‘S (/ab g>_l <G /abw (/abg) g’ (byw’(b)

148

for every a and a.e. b. For this J, g_‘sw isin AT (g).
1

Proof. Let a and b be real numbers with a < b and with b verifying
-, - -1
M (g™ w)(b) < C(g™ w)(b).
Let O, = {x: Mg“(g_'wx(a’b))(x) > A} be open. Then there exists a sequence

of pairwise disjoint open intervals / ;= (a D bj) such that O, =JI f with

-1
X X
(7.2) /awx(a’b) (/a g) > A foreveryxe(aj,bj)

and with

b, 5, \ !
(7.3) / WX (4.0 (/ g) =A forevery j.
a; a

J J

It is clear that each a; is bigger than a. Then, if 1 > C(g'l'w)(b) , where C is
the A1+(g) constant of w , each I, verifies either (a, b) > I, or I)N(a, b)=0,
since if Ij is not contained in (a, ) and I;N(a, b) # &, then b € I and

therefore
b b\ 7! —1
[ wren (/ g) > 4> (g™ w)(b)

which goes against the election of b.
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By Lebesgue’s differentiation theorem we have that {x € (a, b): (g"w)(x)
> A} is contained in O,. This relation, (7.3), and condition A;'(g) for w
imply
(7.4)

’wsl Z /g<A l

{x€(a,b) : (g7 w)(x)>1} . (@61} {x€(a,b) : Clg™'w)(x)>4}

Let 6 > 0. Multiplying the last inequalities by 2!

respect to A from C(g_lw)(b) to +oo we get

+00 S5—1
/ p / w(x)dx | di
Clg™ w)(b) {x€(a,b) : (g~ w)(x)>1}

<C'(1+6)” / b(g“w)“"(x)g(x) dx.

On the other hand, the first item of (7.5) is equal to
b ple7'wx) s
/ / AT dA ) w(x)dx
a C(g™'w)(d)
b
—s / g o' c"a“(g“w)"(b)/ w.
a
(7.5) together with (7.6) gives

7.7 7 -c™*a +a)")/ g 70w < %67 (g w) () /bw.

Choosing & such that 6~ — C'*°(1 +6)~! > 0, we obtain the result.

and then integrating with

(1.5)

(7.6)

Corollary 2. Let 1 <p <oo. If w is in A;(g) then there exists ¢ > 0 such
that p—e>1 and w isin A;_e(g).

Proof. Let w € A, (g). By factorization, there exist w, in 4;(g) and w, in
Al_(g) such that w = g° _'wowl"” . By Theorem 6 there exist & > 0 such that
g °w/* € 47 (g). Then

w= g wow, " = & wy(e 7w ™) ™Y withe =8~ 1)(1+6)”"
and the result follows from Corollary 1.

Corollary 3. If w € A;L(g) then there exists y with 0 < y < 1, a function k
with k and k™" in L™, and a function f such that w = kg(M, ).

Proof By Theorem 6, there exists 6 > O such that M, (g~ w)”")'/“*") <

Cg™ 'w a.e. On the other hand, Lebesgue’ s dlﬁ'erentlatlon theorem gives g~ Lw
< (M (g7 w)*) D Let k(x) = g7 (x)w(x)(M; (g7 w)' T (x)) T
Then C™' <k <1 and w = gk(Mg—f)y where y = (1 +6)_l and f =
(g—lw)l+6'
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(D) Extrapolation. We can also state the following theorem.

Theorem 7. Let T be a sublinear operator acting on measurable functions on
R. Suppose that for a certain p,, 1 < p, < oo, and for every w in A;O(g) , T
is of weak type (p,, p,) with respect to the measure wdx. Then for every p
with 1 < p < oo and every w in A;(g), T is bounded on LF(wdx).

The proof follows that of [3] with the obvious changes, which are essentially
the definition of G in Lemma 1 in [3] (now G = (gMg_(g_lhl/’w)w_l)') and

the fact that w is in A;(g) if and only if g”,a isin A4,(g).
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