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WEIGHTED INEQUALITIES FOR ONE-SIDED
MAXIMAL FUNCTIONS

F. J. MARTlN-REYES, P. ORTEGA SALVADOR, AND A. DE LA TORRE

Abstract. Let M+ be the maximal operator defined by

M+gf(x) = sup (f*+" \f(t)\g(t) dt\ n*+H g(t) dtj      ,

where g is a positive locally integrable function on R. We characterize the

pairs of nonnegative functions (u,v) for which M* applies Lp(v) in Lp(u)

or in weak- Lp(u). Our results generalize Sawyer's (case g = 1 ) but our proofs

are different and we do not use Hardy's inequalities, which makes the proofs of

the inequalities self-contained.

1. INTRODUCTION

In this paper we will study the operator M+g acting on measurable real func-

tions on R defined by

/x+h /  r-x+h \ ~

\f(t)\g(t)dt[jx        g(t)dt\        ,

where g is a locally integrable and positive function. If g = 1 we obtain

the one-sided Hardy-Littlewood maximal operator which has been studied by

Sawyer [7].

We will characterize the pairs of weights (u,v) such that Mg is of weak and

strong type (p, p) with respect to the measures vdx and udx. Our results

include Sawyer's as particular cases, but with different proofs. The proof of

the theorem about the weak type (p, p) (p > 1) is adapted from [1]. On the

other hand, the proof of the theorem about the strong type (p, p) is simpler

than the corresponding one in [7] (our proof follows the pattern of the proof in

[6]) and besides we do not use Hardy's inequalities which makes the proofs of

the inequalities self-contained. We also include the weak type (1,1) that is not
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studied in [7]. Finally we give several results about the good weights for Mg

such as relations with Muckenhoupt's classes, factorization, and extrapolation.

2. Notation and main results

Throughout this paper, g will be a positive locally integrable function and C

a positive constant not necessarily the same at each occurrence. If p > 1, then

its conjugate exponent will be denoted by p , and for a Lebesgue measurable

set A, Xa wiU De i*s characteristic function and \A\ its measure.

We will say that a pair of nonnegative functions (u, v ) satisfies condition

dp(g)> p > 1, if there exists a constant C > 0 such that for every y,x,b

with y < x < b,

(2" f"(/<V*Pc(r<)''
where a = v" 'p~   (as usual, we consider 0 • oo = 0).

Condition A\(g) is given by

(2.2) M~(g~ u)<Cg~ v   a.e.,

where M~ is the left maximal operator defined in the obvious way.

A pair of nonnegative functions (u, v) satisfies condition Sp (g), p > 1,

if there exists a constant C > 0 such that for every interval I = (a, b) with

/(-oo>a)M>°>

(2.3) / (M+g(xIglp-Xo))pu <C j gp'cj < oo.
J a J a

Our main results are the following three theorems.

Theorem 1.  Mg   is of weak type (p, p), p > 1, with respect to the measures

vdx and udx if and only if (u, v) satisfies A^(g).

Theorem 2. Mg is of strong type (p , p), p> 1, from Lp(v) to Lp(u) if and

only if (u, v) satisfies Sp(g).

Theorem 3. If u = v and p > 1, Ap(g) and Sp(g) are equivalent conditions,

that is, the weak type (p, p) is equivalent to the strong type (p, p).

3. Proof of Theorem 1 for p = 1

We will need two lemmas:

Lemma 1. Let w be a positive increasing function defined on I = [a, b] (i.e.,

s < t implies w(s) < w(t)). Let f be a positive function on I. Suppose for

some positive number k

/b rb
gf>*g    for every t e I.

Then k \ba gw < /a* gfw .
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Proof of Lemma 1. Let B > 1. Let

E=lte[a,b]:k j   gw

<kf gw + Bw(t)  kfg-ffg+BJ fgw\.

Let t = inf E (E is nonempty). We claim that t = a. If a < t , let n e (a, x)

such that Bw(n) > ess sup{tu(r): a < t < t} . We will prove that n eE, which

will contradict that t = inf £ . Since x e E we have

A/   gw<k      gw + Bw(x)  k      g-      fg\+B      fgw.
Ja Ja Jx Jx Jx

Now, the fact that w is increasing, the assumptions of the lemma and n < x

give

rb rTJ rX rb pb

k      gw<k      gw + k      gw + Bw(n)  k      g-      fg
Ja Ja J t\ Jx Jx

+ B      fgw -B      fgw.
J tj J rj

If we use again that w is increasing and the election of r\, we obtain

rb rt] pb rb

k      gw<k      gw + Bw(n)  k      g-      fg
Ja Ja Jx Jx

+ BJ fgw + Bw(n)\kf g- J' fg\
pt\ rb rb rb

= k     gw + Bw(n) k     g-     fg\+B     fgw.
Ja J rj J r\ Jr\

This means that n e E, a contradiction. Hence, x = a and then a e E, that

is

k f gw< Bw(a)  k f g- f fg   +B f fgw.
Ja Ja Ja Ja

Since the expression in brackets is nonpositive, we obtain k f gw < B fb fgw .

Letting B tend to 1, we have the result.

Lemma 2. // (u, v) satisfies A+X(g) and [a, b] is an interval, then there exists

an increasing function w on [a, b] such that

(i) w(s) <Cg~\s)v(s) a.e. s e[a, b].

(ii) /a* u < /a6 gw .

Proof of Lemma 2. Let G(y) = M~(g~xux[a b])(y) ■ The function G is lower

semicontinuous and finite a.e. by A^(g).
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Let w(x) = min^ <6 G(y). It is obvious that w is increasing and verifies

(i). To see (ii), let 0~<~5 < 1 and

A = < t e [a, b]:   /   gw > B      u for every y e[t,b]\.

It is clear that A is a closed interval [x, b]. We will prove that x — a .

Suppose x > a. Since G is lower semicontinuous, there exists d > 0 such

that G(x) > BG(x) if x e [x - 6, x). For such an x,

w(x) =  min G(y) = min < min G(y),  min G(y) >
x<y<b [x<y<x t<y<b J

> min{5C7(T), w(x)} > Bw(x).

By the definition of w, there exists y with x < y < b such that w(x) —

G(y). For every x e [x, y], w(x) = w(x) = G(y), and for every x e [x -

8, x), w(x) > Bw(x) = BG(y). Therefore, if x e [x - S, y] then w(x) >

BG(y). Hence
n ry ry

I   gw > BG(y)      g > B      u    for every x e[x -d, y].
Jx Jx Jx

This means that x - 6 e A, which contradicts that x is the infimum of A.

Therefore x = a and then fa gw > B fa u. Letting B tend to 1 the proof is

finished.

Now, it is easy to prove that A^(g) is sufficient for the weak (1,1) inequality.

Let / be a positive function with support bounded from above, and let k, N >

0. Let Ox N = (-N, oo) n {x: Mgf(x) > k} . Ox N is a bounded open set and

therefore there exists a sequence of maximal pairwise disjoint finite intervals

{(aj,bj)} such that OlN = IJ(ay, bj) and $x>fg > k $g for every x e

(a., bj). For each j, by Lemma 2, there exists an increasing function Wj on

[aj, bj] such that

(3.1) W](t)<Cg-\t)v(t)   a.e. te[aj,bj]

and
rbj        fbJ

(3.2) /    u < /    gwr
J a ■ J aj j

If we apply Lemma 1 to each w , we obtain

(3.3) k f ' gW]< f ' gfwj.
J a. J a

Now (3.2), (3.3), and (3.1) give

J°l.H j      J"j J      J"j

^ r' E I"' 8fwj ̂CrlE ftj fv = Ck~X f     fv.
j   J<>, j   Jaj Jox.n
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Letting 7Y tend to infinity we obtain !tx.M+fix)>kx u < Ck-1 f*™ fv .

Conversely, let us suppose that Mg is of weak type (1,1) with respect to

the measures vdx and udx. For every natural number 7Y we consider the

set EN = {x: g~ (x)v(x) < N} and the function vN = vxE  • Let FN and

HN be the Lebesgue sets of g~lvN and xE respectively. It is clear that if

F = f]NFNnHN then |R - F\ = 0. Let"* be in F, and let 8, e > 0

such that fx*g g < 2fxSg. Now consider 7Y with g~l(x)v(x) < N. If

fN = g~lXEi/n{x,x+e) and ye(x-S,x) then

Therefore, by the weak type inequality,

If we let e tend to zero and then N to infinity we get

L"*x (£«)(*"•)w
Since 8 is an arbitrary positive number we obtain M~u(x) < 2C(g~xv)(x)

for all x in F and thus for almost every x in R.

4. Proof of Theorem 1 for p > 1

Suppose that (u,v) satisfies Ap(g) and f,^ b) g = oo for every b in R.

Then if y < x < b

with C independent of x, y, and b . Let a > 0. Multiplying both sides of

(4.1) by g(y)(fy g)~p~a~ and integrating with respect to y on (-oo, x) we

get

(42)       (/>'")'"'/_>« (if «)(jf')""*"'*-

for every x. Computing the right-hand side of (4.2), we obtain

(4.3)

(/>'*)"' />>(jf") (/T~°" *SCa"' (jT*)"-
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Besides

L8{yASyU{t)d)(fy8YaX^

(4.4) = |^ u(t) I f ^ g(y) (j" g\ dy j dt

= |^W(0(p + a)-1N%j dt.

(4.3) and (4.4) give

(4.5) U" /a)      j*^ u(t) U" g\ dt < C(p + a)a~l U* g\     .

It is interesting to note that (4.5) holds even if gp a is not locally integrable,

since Ap(g) implies that if the integral of gp a on [xx, x2] is infinite then

u(t) = 0 for a.e.   t < xx .

Let / be a positive function with support bounded from above. For k > 0

and natural TV, let Ox N = {x: Mgf(x) > k}n(-N,oc). Let (a, b) be a

connected component of Ox. We have

rb rb

(4.6) k      g <      fg    for every x in (a, b).
Jx J X

Let A = {xe[a, b]: fxgp'o = oo}. If A ^0, let xQ = sup A; if A = 0,

let x0 = a. Then fxgpo<oo for every x > x0 and it follows from A* (g)

that u(x) = 0  a.e. in [a, x0]. Thus fa u = fx u.

Let H and h be the functions defined on (a, b) by

(h       \   ~P~a /        h \^IP

| g\ dt    and    h(x)=U /a)      .

It is clear that H(x) = 0 and h(x) = oo if x < x0 and from (4.5) we get

(4.7) (h(x))pH(x)<C(p + a)a~l j f g\ for every x e [a, b].

On the other hand we have

h h /      h      \ PJra

(4.8) j u(x)dx = j H'(x)lj  g)       dx.
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Integration by parts in the right-hand side of (4.8) gives

b b /     b    \P+a~'

j  u(x)dx = (p + a)J H(x)g(x)U g\ dx
(4.9) X° \ x    J ^

<C(p + a)2a~1 j h-p(x)g(x)lj  g\       dx,

by (4.7). Again integration by part gives

Jbu<C(p + a)2a-[ (p-lh-p(x0)(jbg\

(4-10) V , /   *   V      \
-jT h'(x)h-'-\X)M g) dx).

On the other hand, if we raise both sides of (4.6) to the pth power and apply

Holder's inequality with exponents p and p', after introducing suitable factors,

we obtain

<4")   <-(f>Y(t:^w:^f-
Computing the last integral of the above inequality gives us

rb        , ,, rb        , (   rb        ,     \-X'P

jx gpoh-p'p = jx gP{t)a(t)[jt   /a dt

(4.12) ^ \ '

= p'U gpa\      =p'h(x).

Then (4.11) becomes

(4.13) (f'gY <k-pp'p-1 (fxfhv\hp-x(x).

If we set x = x0 in (4.13), we obtain an inequality that allows us to majorize

the first addend of the right-hand side in (4.10), i.e.,

(4.14) h-p(x0) (j\\ < k-pp'p-X ([fhv\ h~x(x0).

To majorize the second addend we will use (4.13), the positivity of -h', and
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integration by parts:

-j\-p-x(x)h'(x)Ubg\   dx

(4.15) < -k~pp'p~l j h~2(x)h'(x) (fbfhv\ dx

= k-pp'p-X (-h-X(x0)Jbfhv + Jbfpv\ .

Finally, (4.14), (4.15), and (4.10) give

(4.16) f'u<Ck-p(p + a)2p'p-Xa-X f' fv < Crp(p + a)2p'p-]a~X tfv.
Ja Jx0 Ja

We have proved that

/     u < Ck'p f     fv.
Jox,N Joiilt

Letting N tend to infinity we obtain the weak inequality.

Everything we have just done is based on the assumption J(oo b) g = oo for

every b. If it is not true we define g„ - g if x > -n and gn = max{g, 1}

if x < -n , for every natural n . Every gn verifies f_oo gn = oo for every b,

and since (u, v) e Ap(g) we have that (u, g~pgpv) satisfies Ap(gn). Then,

by what we have already shown
r r+oo

(4.17) / u<Ck-p Ifffc-'v
J{x :   M* f(x)>X} J-oo

for every /, where C depends only on the constant of the Ap(g) condition.

Now if we apply (4.17) to the functions fXt-„ oo) we have

r r+OO

/ u < crp /    |/|V
J{x>-n :   M*f(x)>X} J-n

Letting n tend to infinity we obtain the weak type inequality.

Conversely, suppose that Mg is of weak type (p, p) with respect to the

measures v dx and udx . Let x, y, b be given with x < y < b. For every

natural n , let h„ = gp ax,       .<    ,   , ■   {h„} is an increasing sequence with

limit /a. Let / = X(y,b){g-1v)-l,p-lX{x : /ff<„} and Bn= fby hn(fx g)'1 .

If z e [x, y] we have Mgf(z) > Bn . Then, the weak type inequality gives

fu<CB-nP fhn,
J x Jy

or equivalently
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Now the Ap(g) condition follows from the monotone convergence theorem.

5. Proof of Theorem 2

The necessity of Sp(g) for the two-norm inequality is trivial. For the con-

verse it will suffice to prove the strong type inequality for bounded positive /

in Lp(v) with support bounded from above.

Let N be a positive integer. For k > 0 let

Ok = {xe R: Mgf(x) > 2k} n (-N, +00).

Each Ok is an open set and, therefore, there exists a sequence {Ijk}j of open

pairwise disjoint intervals with Ok = (J, Ijk and such that

fbjk k   fbjk
(5.1) /     gf>2 g     for every x e Ijk = (ajk, bjk).

Jx Jx

It is clear that sup   k\Lk\ < 00.   For every j and k let AJk — {x e Lk:

rV gp'(j = 00}.  If Ajk ^ 0, let xjk = supA; if Ajk = 0, let xjk = a]k .

It is clear that fxJk gp a < 00 if x > xjk and u = 0  a.e.  x in (ajk, xjk) by

Sp(g). For every 7 and k let

Ejk = Ijkn{x:M;f(x)<2k+X}    and    Fjk = (xJk, bjk)nEjk.

The sets £ ^ are pairwise disjoint and for every k

(5.2) \jEjk = {x:2k< M+gf(x) < 2k+X}n(-N, 00).

j

Then

/+OO r«/)'" = E/ ,       tlK/)p"
-N s k   J(-N +oo)n{x :   2k<M+f(x)<2k+'}       *

= E/(</)"" = E/(</)p-
k,jJEik k,jJF,k

By the definition of Fjk and by (5.1) we have that the last term is smaller than

or equal to

Therefore
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Let X = Z x Z x R and let co be the product measure v x v x m where v is

the counting measure on Z and m is the Lebesgue measure on R. Let q> be

the real function defined on X by

f(j, k, x) = xFjk{x)u(x) I J '" gp a\   I / '" g\

and let T be the linear operator

Th(j,k,x) = j''' h/a Ubjk /aj     .

With these notations inequality (5.3) can be written in the following way:

/+OO rn {M+gf)pu < 2P j[T(f(g-Xv)Xlp-X)]p(pdco.

i
If we prove that the operator T is bounded from Lp(gp a dx) to LP(X, cpdco),

we will get

/+OO r+OO i r+OO{M+gf)pu < C2P /      (f(g-lv)X/p-X)pgp a = C2p fv ,
-N J — oo J—oo

and, letting N tend to infinity, the proof will be finished.

To prove the boundedness of T we observe that it is obviously bounded in

L°° and by Marcinkiewickz's interpolation theorem it will be enough to prove

the weak type (1,1), i.e., f{u,k>x)eX. Th{j>k,x)>x} <pdco < Ck~x /+~ hg" a with

C the constant of condition (2.3).

Let AJk(k) = Fjkr\{x: Th(j, k, x) > k} . The sets Ajk are pairwise disjoint.

For each pair j, k, let sjk(k) = inf Ajk(k) and Jjk = Jjk(k) = [sjk(k), bJk). If

we pick up two of these intervals Jjk and Jlm , then they are either disjoint or

one of them is contained in the other. Also it is clear that each JJk verifies

(5.5) /   hgp'a>kj   /a.
Jjjk JJjk

Let {/J be the maximal elements of the family {Jjk} ■ These maximal ele-

ments exist since the intervals Jjk have uniformly bounded lengths. Also the



WEIGHTED INEQUALITIES FOR ONE-SIDED MAXIMAL FUNCTIONS 527

intervals Jt verify (5.5). Then

/ tp(j, k,x)dco
J{{j,k,x) :   Th(j,k,x)>X}

^E E /      u(x)(f'k/a)P(fJkg)P dx
i \(k,j):   JPJ]k}JA^ \Jx J     \Jx J

^ E / {M+g(XjgXIP~Xo)(x))pu(x)dx
tJJ,

<CJ2[ /(xMx)dx    by (2.3),
; Jj.

and by (5.5) the last term is smaller than or equal to

, f i r+oo i

Ck x^2     b(x)g" (x)a(x)dx <Ck l h(x)g" (x)a(x)dx.
j     J Jj J-oo

This proves the weak (1,1) inequality for T and hence the proof of Theorem

2 is finished.

6. Proof of Theorem 3

Suppose that u e Ap(g). Let I = (a, b) be an interval such that /^ u > 0.

This implies that / gp a < oo where a = u~x'p~x. Let x el then there exist

h > 0 with x + h e I such that

(6.1) \M+(x,/p-'a)(x)<iy/a^g^     .

For this h there exists t with 0 < t < h such that 2 f*+t g = fx+h g. This t

verifies

(6.2) f+gP(T {f'g)     ~ M+g^'P~lo)(x).

(6.1) and (6.2) give

(6.3) M+g(Xlgllp-la)(x) < 4j£** A [[^ s)     ■

On the other hand, condition Ap (g) for u gives

rx+h       ,      (   rx+h    \_1 /   rx+h    \P'-{   /   rX+t    \ I-P'

(64) L''[f. s) SCU s) U. ') ■
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Now (6.3) together with (6.4) gives

, .      , /   rx+h     \p "'   /   rx+t    \ I-P'

,6.5, K^'"-'^<C[1     ,)       (/     „)
<C(M+u(Xlgu-x)(x))p'-x.

Raising to p and multiplying by u(x), we get

(6.6) (M+g(xl8Xlp-Xa)(x))pu(x) < C(M+u(xlgu-l)(x))p'u(x).

i
But M* is bounded in Lp (u), because u e A*(u) for every r > 1 . Then

j(M+g(xIgIP~Xa)(x))pu(x)dx < cj/a.

Therefore u satisfies Sp(g).

The fact that Sp(g) implies Ap(g) is a consequence of Theorems 1 and 2,

not only for a weight, but for pairs of weights. However, we are going to give

a direct proof. Suppose that the pair (u, v) satisfies Sp(g). Let a, b , and c

be real numbers with a < b < c. If the integral of ^ a on [b, c] is equal to

infinity, then, by Sp(g), u(x) = 0  a.e.  x in [a, b] and the inequality

is trivially satisfied.

Now suppose that the integral of gp a over [b, c] is finite. We define a

possibly finite decreasing sequence by x0 = b and xk+x the real number such

that

Jb JxM

if

\     g  o>2   l   g  a
J —oo J b

otherwise the sequence finishes in xk .

Suppose first that the sequence is finite and xr is its last term. If r = 0, then

/*"(*)(£*)  " (Ji8''0)" dx~ jy(x)(M+g(x(aMgXlP~Xa)(x))pdx

re       i re       i

<C\   gpa<2C      gp a.
Ja Jb

This implies trivially Ap (g).
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If r > 0, let a < xr and a < a . Then,

s2~"/>>(/T {f/')'dx

+ '■£2-*' F u{x)(['gY' { f /*X dx
k=0 JxM ^Jx       ' VXk J

< 2~rp j"' u(x)(M+g(x(a,,c)glp-Xa)(x))pdx
J a'

+ £2-*p r (M+g(x(XM,c)gXlp-Xa)(x))pu(x)dx
k=0 Jxk+\

sc(±2-—)/;/., c[/.

Finally, suppose that the sequence is infinite and let d = lim xk . If d is

finite, then u = 0 a.e. in (-co, d) by Sp (g). So, whether d is finite or not

we have

rb f   rC     \ ~P   /   re        ,     \P rb /   rC     \-p   /   rC       ,     \P

L"{x]{lg) (Lg'°) dx<-Lulx)\Lg) U*'')dx-
Using the reasoning above with sum from 0 to oo completes the proof.

7. Further results

(A) Relations with Muckenhoupt's Ap(g) classes and Sawyer's Sp(g) classes.

Consider the weighted two-sided Hardy-Littlewood maximal operator defined

by

It is clear that the following relation holds:

(7.1) \(M+g + M~) <Mg< M+g + Mg.

We have the following results for M   (see e.g. [5, 6]):

(i) Let 1 < p < oo. Mg is of weak type (p, p) with respect to the measures

vdx and udx if and only if the pair (u,v) satisfies Ap(g),i.e.

Ap(g): There exists C > 0 such that

(/»(/vf-(r<y
for every interval (a, b) and p > 1 .
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Ax(g): There exists C > 0 such that MJg~ u) < Cg~ v  a.e.

(ii) Let 1 < p < oo. Mg is of strong type (p, p) with respect to the measures

vdx and udx if and only if the pair (u,v) satisfies Sp(g), i.e.,

Sp(g): There exists C > 0 such that for every interval (a, b)

f \Mg(x(aMgXlp-Xa)\pu <C f /a < oo.
J a J a

Of course, if u — v then Ap(g) and S (g) are equivalent conditions.

It follows from these results, our theorems, and (7.1) that Ap(g) - Ap(g) n

A~{g) (1 </><oo) and Sp(g) = Sp(g)nS~(g) (1 <p < oo). We will now give

direct proofs of these equalities and so results (i) and (ii) will be consequences

of the results in this paper.

Theorem 4. (a) Ap(g) = A+p(g) n Ap(g) (1 < p < oo).

(b) sp(g) = s;(g)ns;(g)(i<p<oC).

Proof of Theorem A. (a) For p = 1 the equality is trivial by (7.1). Let 1 < p .

Since it is clear that Ap (g) n A~~(g) D Ap(g) we only have to prove Ap(g) D

4p(g) ^Ap(g). Let (u, v) be in Ap(g) C\A~(g), let a and c be real num-

bers with a < c, let N be a natural number, define GN(x) = (g17 a)(x) if

(gp a)(x) < N and GN(x) = 0 otherwise. There exists h such that

/-C rh rC

/   G„ = 2/   Gw = 2/   GN.Ja Ja Jh

Then

< 2PC [j* gj     by 4+(g) and ^(^).

Letting N tend to infinity we get A (g).

Finally, (b) follows clearly from (7.1).

(B) Factorization. We will give here a result that generalizes the theorem of

Coifman, Jones and Rubio de Francia [2] (see also [4]). As consequences, we

will obtain the factorization of Ap(g) and A~(g) weights.

Theorem 5. Let F and G be two sublinear operators acting on measurable func-

tions of a measure space (X, DJl, p.). For p > 1 let Wp = {w: F is bounded in

Lp(wdp)} and U - {u: G is bounded in Lp(udri)} . Let g be a positive func-

tion, and let Wx = {w: G(g~xw) < Cg~xw a.e.} and Ux = {u: F(g~xu) <

Cg'xu a.e.}.    Then  gp~xWxu\~p  D  WpC\gpUx~p, i.e., if w e  Wp  and

gp w~x/p~x e U   then there exist w0 e Wx  and u0 e Ux  such that w =
p-\       \-p

r  ™0Mo   •
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If F = G and g = 1  we obtain the above-mentioned result of Coifman,

Jones, and Rubio de Francia.

Proof. This proof follows the proof of Theorem 5.2 in [4], with the obvious

changes. Suppose 1 < p < 2 . Let w e Wp n g? U' ~p . We have to find v such

that
(i) vweWx,  i.e., G(g~xvw) < Cg~xvw  a.e.,

(ii) gvx/p-x e Ux, i.e., F(vl,p~l) < Cvx/p-x   a.e.

Let us define an operator S by S(u) = \G(g~xuw)\w~xg + (F(\u\x,p~x))p~l.
i

The operator S is positive, sublinear, and bounded on Lp (w). So, S verifies

the conditions of Lemma 5.1 in [4], and it ensures the existence of such a v .

Then wQ = vw and u0 = gvx/p~x .

Corollary 1. w e Ap (g) ifandonlyifw = gp~iw0wxx~p with w0eA+x(g) and

wx eA~(g).

Proof. If in Theorem 5, we take F = Mg  and G — M~ , the classes of good

weights are, respectively Wp = Ap(g) and Up = Ap(g). Then Theorem 5

assures

gp-lAl(g)(A;(g))1-" D A+p(g) n gp(A~p (g))X~p.

But Ap(g) n gP(A~(g))x~p = A*(g), and this proves the factorization of a

weight in Ap(g).

Conversely, take w0 e A+X(g) and wx e A~(g), and let w - gp~xwQwlx~p .

If a<b<c,

fAf/^-r
= Ja   W^8~IW1)1~" (J   ̂ i(g~XW0)l~PJ

ic(iiw'{x)(rs)"{rw')"dx)

*{JrALg)P~'(Lw°T'dx)'

for every h, s > 0 by condition A\(g) for w0 and A~(g) for wx . In partic-
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ular, if h = c - x and s = x - a we obtain

X   [lb   WX(X) (la    W°)      "   dX)

Af»'-
(C).

Theorem 6. If w is in A^(g) then there exists 8 > 0 such that

faS~S^+5{[g\     < Cs ['w (j'g\     g-\b)w\b)

for every a and a.e.  b. For this 8,  g~ w +   is in A+X(g).

Proof. Let a and b be real numbers with a < b and with b verifying

M-(g-xw)(b)<C(g~xw)(b).

Let Ok = {x: M~(g~xwx,a b))(x) > k} be open. Then there exists a sequence

of pairwise disjoint open intervals / = (a , b,) such that Ok = \JI, with

(7.2) /   wx(ab)il   gj     >k     for every xe(a],bJ)

and with

(7.3) J ' wx(ab)[j ' g\     =k    forevery).

It is clear that each a is bigger than a. Then, if k> C(g~xw)(b), where C is

the A^(g) constant of w , each / verifies either (a, b) D / or Ln(a, b) = 0,

since if / is not contained in (a, b) and /,. n (a, b) ^ 0, then b e Ij and

therefore

l'wx^b)[j'A     >l>C(g~Xw)(b)

which goes against the election of b .
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By Lebesgue's differentiation theorem we have that {x e (a, b): (g~ w)(x)

> k} is contained in Ok. This relation, (7.3), and condition A^(g) for w

imply

(7.4)

/ W<k    y,    Ig^xi g-
J{x€(a,b):   (g-lw){x)>X) {j .   (a,6)D/} •>/, J{x€(a,b):   C(g-'w)(x)>X}

Let 8 > 0. Multiplying the last inequalities by k and then integrating with

respect to k from C(g~ w)(b) to +co we get

/+ *S~\[ w(x)dx)dk
(7 5) JC{g-'w)(b) \J{xe(a,b) :   (g-'w){x)>X} J

<Cd+x(l+8yx f (g-xw)x+s(x)g(x)dx.
J a

On the other hand, the first item of (7.5) is equal to

f   (/       " X kd'x dk\w(x)dx
(7>6) Ja     \Jc(g-lw)(b) J

— 8~   I   g~ w     - C 8~ (g~ w) (b) I   w.
J a J a

(7.5) together with (7.6) gives

(7.7) (8~l -CX+S(l+8)-X) fb g-SwX+S <CS8-X(g~xw)S(b) f w.
J a J a

Choosing 8 such that 8~x - Cx+d(l +8)~x >0,we obtain the result.

Corollary 2. Let 1 < p < oo. If w is in Ap(g) then there exists e > 0 such

that p - e > 1 and w is in A*(g).
P     e

Proof. Let weAp(g). By factorization, there exist w0 in A\(g) and wx in

A\~(g) such that w = gp~ w0wx~p . By Theorem 6 there exist 8 > 0 such that

g-'wl+'eA+ig). Then

w = gp-Xw0w\-p = gp-e-xw0(g~Sw\+S)x-(p-E)     with e = 8(p-l)(l+8)-x

and the result follows from Corollary 1.

Corollary 3. If w e A*(g) then there exists y with 0 < y < 1, a function k

with k and k~   in L°°, and a function f such that w = kg(Mgf)y.

Proof. By Theorem 6, there exists 8 > 0 such that Mg(g'xw)x+S)x/(X+S) <

Cg~ w a.e. On the other hand, Lebesgue's differentiation theorem gives g~xw
< (M-(g-xw)x+5)xl{x+S). Let *(*) = g-x(x)w(x)(Mg(g-xw)x+s(x)yxl(x+S).

Then C"1 < k < 1 and w = gk(M~f)y where y = (1 + 8)~x and / =

(g-Xw)x+*.
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(D) Extrapolation. We can also state the following theorem.

Theorem 7. Let T be a sublinear operator acting on measurable functions on

R. Suppose that for a certain p0, 1 < p0 < oo, and for every w in A+ (g), T

is of weak type (p0, p0) with respect to the measure wdx. Then for every p

with 1 < p < oo and every w in Ap(g), T is bounded on Lp(wdx).

The proof follows that of [3] with the obvious changes, which are essentially

the definition of G in Lemma 1 in [3] (now G = (gM~(g~xhx/'w)w~x)') and

the fact that w is in Ap(g) if and only if gp a is in A~>(g).
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