Hall-Littlewood functions, plane partitions, and the Rogers-Ramanujan identities
HTML articles powered by AMS MathViewer
- by John R. Stembridge
- Trans. Amer. Math. Soc. 319 (1990), 469-498
- DOI: https://doi.org/10.1090/S0002-9947-1990-0986702-5
- PDF | Request permission
Abstract:
We apply the theory of Hall-Littlewood functions to prove several multiple basic hypergeometric series identities, including some previously known generalizations of the Rogers-Ramanujan identities due to G. E. Andrews and D. M. Bressoud. The techniques involve the adaptation of a method due to I. G. Macdonald for calculating partial fraction expansions of certain types of symmetric formal power series. Macdonald originally used this method to prove a pair of generating function identities for plane partitions conjectured by MacMahon and Bender-Knuth. We show that this method can also be used to prove another pair of plane partition identities recently obtained by R. A. Proctor.References
- George E. Andrews, Partition theorems related to the Rogers-Ramanujan identities, J. Combinatorial Theory 2 (1967), 422–430. MR 214482
- George E. Andrews, An analytic generalization of the Rogers-Ramanujan identities for odd moduli, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 4082–4085. MR 351985, DOI 10.1073/pnas.71.10.4082
- George E. Andrews, On the general Rogers-Ramanujan theorem, Memoirs of the American Mathematical Society, No. 152, American Mathematical Society, Providence, R.I., 1974. MR 0364082
- George E. Andrews, Problems and prospects for basic hypergeometric functions, Theory and application of special functions (Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975) Math. Res. Center, Univ. Wisconsin, Publ. No. 35, Academic Press, New York, 1975, pp. 191–224. MR 0399528
- George E. Andrews, The theory of partitions, Encyclopedia of Mathematics and its Applications, Vol. 2, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976. MR 0557013
- George E. Andrews, Partitions and Durfee dissection, Amer. J. Math. 101 (1979), no. 3, 735–742. MR 533197, DOI 10.2307/2373804
- George E. Andrews, Plane partitions. I. The MacMahon conjecture, Studies in foundations and combinatorics, Adv. in Math. Suppl. Stud., vol. 1, Academic Press, New York-London, 1978, pp. 131–150. MR 520557
- George E. Andrews, Plane partitions. I. The MacMahon conjecture, Studies in foundations and combinatorics, Adv. in Math. Suppl. Stud., vol. 1, Academic Press, New York-London, 1978, pp. 131–150. MR 520557 —, $q$-series: their development and application in analysis, combinatorics, physics, and computer algebra, CBMS Regional Conf. Ser. in Math., no. 66, Amer. Math. Soc., Providence, R.I., 1986.
- David M. Bressoud, A generalization of the Rogers-Ramanujan identities for all moduli, J. Combin. Theory Ser. A 27 (1979), no. 1, 64–68. MR 541344, DOI 10.1016/0097-3165(79)90008-6
- David M. Bressoud, Analytic and combinatorial generalizations of the Rogers-Ramanujan identities, Mem. Amer. Math. Soc. 24 (1980), no. 227, 54. MR 556608, DOI 10.1090/memo/0227 —, Lattice paths and the Rogers-Ramanujan identities, Pennsylvania State Univ. preprint.
- Corrado De Concini, Symplectic standard tableaux, Adv. in Math. 34 (1979), no. 1, 1–27. MR 547837, DOI 10.1016/0001-8708(79)90061-6
- Basil Gordon, A combinatorial generalization of the Rogers-Ramanujan identities, Amer. J. Math. 83 (1961), 393–399. MR 123484, DOI 10.2307/2372962
- Basil Gordon, A proof of the Bender-Knuth conjecture, Pacific J. Math. 108 (1983), no. 1, 99–113. MR 709701
- I. P. Goulden, Exact values for degree sums over strips of Young diagrams, Canad. J. Math. 42 (1990), no. 5, 763–775. MR 1080995, DOI 10.4153/CJM-1990-040-4
- I. G. Macdonald, Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1979. MR 553598
- Robert A. Proctor, Bruhat lattices, plane partition generating functions, and minuscule representations, European J. Combin. 5 (1984), no. 4, 331–350. MR 782055, DOI 10.1016/S0195-6698(84)80037-2
- Robert A. Proctor, New symmetric plane partition identities from invariant theory work of De Concini and Procesi, European J. Combin. 11 (1990), no. 3, 289–300. MR 1059559, DOI 10.1016/S0195-6698(13)80128-X
- Bruce E. Sagan and Richard P. Stanley, Robinson-Schensted algorithms for skew tableaux, J. Combin. Theory Ser. A 55 (1990), no. 2, 161–193. MR 1075706, DOI 10.1016/0097-3165(90)90066-6
- L. J. Slater, Further identities of the Rogers-Ramanujan type, Proc. London Math. Soc. (2) 54 (1952), 147–167. MR 49225, DOI 10.1112/plms/s2-54.2.147
- Richard P. Stanley, Symmetries of plane partitions, J. Combin. Theory Ser. A 43 (1986), no. 1, 103–113. MR 859302, DOI 10.1016/0097-3165(86)90028-2
- Dennis Stanton and Doron Zeilberger, The Odlyzko conjecture and O’Hara’s unimodality proof, Proc. Amer. Math. Soc. 107 (1989), no. 1, 39–42. MR 972238, DOI 10.1090/S0002-9939-1989-0972238-1
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 319 (1990), 469-498
- MSC: Primary 05A19; Secondary 05A17, 05A30, 11P68
- DOI: https://doi.org/10.1090/S0002-9947-1990-0986702-5
- MathSciNet review: 986702