Dirac manifolds
HTML articles powered by AMS MathViewer
- by Theodore James Courant
- Trans. Amer. Math. Soc. 319 (1990), 631-661
- DOI: https://doi.org/10.1090/S0002-9947-1990-0998124-1
- PDF | Request permission
Abstract:
A Dirac structure on a vector space $V$ is a subspace of $V$ with a skew form on it. It is shown that these structures correspond to subspaces of $V \oplus {V^{\ast }}$ satisfying a maximality condition, and having the property that a certain symmetric form on $V \oplus {V^{\ast }}$ vanishes when restricted to them. Dirac structures on a vector space are analyzed in terms of bases, and a generalized Cayley transformation is defined which takes a Dirac structure to an element of $O(V)$. Finally a method is given for passing a Dirac structure on a vector space to a Dirac structure on any subspace. Dirac structures on vector spaces are generalized to smooth Dirac structures on a manifold $P$, which are defined to be smooth subbundles of the bundle $TP \oplus {T^{\ast }}P$ satisfying pointwise the properties of the linear case. If a bundle $L \subset TP \oplus {T^{\ast }}P$ defines a Dirac structure on $P$, then we call $L$ a Dirac bundle over $P$. A $3$-tensor is defined on Dirac bundles whose vanishing is the integrability condition of the Dirac structure. The basic examples of integrable Dirac structures are Poisson and presymplectic manifolds; in these cases the Dirac bundle is the graph of a bundle map, and the integrability tensors are $[B,B]$ and $d\Omega$ respectively. A function $f$ on a Dirac manifold is called admissible if there is a vector field $X$ such that the pair $(X,df)$ is a section of the Dirac bundle $L$; the pair $(X,df)$ is called an admissible section. The set of admissible functions is shown to be a Poisson algebra. A process is given for passing Dirac structures to a submanifold $Q$ of a Dirac manifold $P$. The induced bracket on admissible functions on $Q$ is in fact the Dirac bracket as defined by Dirac for constrained submanifolds.References
- Ralph Abraham and Jerrold E. Marsden, Foundations of mechanics, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1978. Second edition, revised and enlarged; With the assistance of Tudor Raţiu and Richard Cushman. MR 515141 Gloria Alvarez-Sanchez [1986], Geometric methods of classical mechanics applied to control theory, Ph.D. thesis, University of California at Berkeley. Coste, Dazord and Weinstein [1986], (to appear).
- Pierre Dazord, Feuilletages à singularités, Nederl. Akad. Wetensch. Indag. Math. 47 (1985), no. 1, 21–39 (French). MR 783003 A. M. Dirac [1964], Lectures in quantum mechanics, Yeshiva University. J. Gotay and J. E. Nester [1979], Ann. Inst. H. Poincaré Anal. Non Linéaire 30, 129. J. Gotay [1983], Coisotropic imbeddings, Dirac brackets and quantization, preprint.
- Mark J. Gotay, James M. Nester, and George Hinds, Presymplectic manifolds and the Dirac-Bergmann theory of constraints, J. Math. Phys. 19 (1978), no. 11, 2388–2399. MR 506712, DOI 10.1063/1.523597
- Victor Guillemin and Shlomo Sternberg, Geometric asymptotics, Mathematical Surveys, No. 14, American Mathematical Society, Providence, R.I., 1977. MR 0516965 J. Hanson, T. Regge, and C. Teitelboim [1976], Accad. Naz. Lincei Rome 22.
- Robert Hermann, Lie algebras and quantum mechanics, W. A. Benjamin, Inc., New York, 1970. MR 0266519
- André Lichnerowicz, Les variétés de Poisson et leurs algèbres de Lie associées, J. Differential Geometry 12 (1977), no. 2, 253–300 (French). MR 501133
- Robert G. Littlejohn, A guiding center Hamiltonian: a new approach, J. Math. Phys. 20 (1979), no. 12, 2445–2458. MR 553507, DOI 10.1063/1.524053
- Robert G. Littlejohn, Hamiltonian formulation of guiding center motion, Phys. Fluids 24 (1981), no. 9, 1730–1749. MR 628941, DOI 10.1063/1.863594
- K. Mackenzie, Lie groupoids and Lie algebroids in differential geometry, London Mathematical Society Lecture Note Series, vol. 124, Cambridge University Press, Cambridge, 1987. MR 896907, DOI 10.1017/CBO9780511661839
- Jerrold E. Marsden and Tudor Ratiu, Reduction of Poisson manifolds, Lett. Math. Phys. 11 (1986), no. 2, 161–169. MR 836071, DOI 10.1007/BF00398428
- Jean Martinet, Sur les singularités des formes différentielles, Ann. Inst. Fourier (Grenoble) 20 (1970), no. fasc. 1, 95–178 (French, with English summary). MR 286119 Richard Montgomery [1985], personal communication.
- Yong-Geun Oh, Some remarks on the transverse Poisson structures of coadjoint orbits, Lett. Math. Phys. 12 (1986), no. 2, 87–91. MR 858269, DOI 10.1007/BF00416457
- Stephen Omohundro, Geometric Hamiltonian structures and perturbation theory, Local and global methods of nonlinear dynamics (Silver Spring, Md., 1984) Lecture Notes in Phys., vol. 252, Springer, Berlin, 1986, pp. 91–120. MR 856947, DOI 10.1007/BFb0018331 —[1985], Geometric perturbation theory and plasma physics, Ph.D. thesis, University of California at Berkeley.
- Spyros N. Pnevmatikos (ed.), Singularities & dynamical systems, North-Holland Mathematics Studies, vol. 103, North-Holland Publishing Co., Amsterdam, 1985. MR 806173
- Spyros N. Pnevmatikos, Structures hamiltoniennes en présence de contraintes, C. R. Acad. Sci. Paris Sér. A-B 289 (1979), no. 16, A799–A802 (French, with English summary). MR 558801
- Spyros N. Pnevmatikos, Structures symplectiques singulières génériques, Ann. Inst. Fourier (Grenoble) 34 (1984), no. 3, 201–218 (French, with English summary). MR 762699
- Jędrzej Śniatycki, Dirac brackets in geometric dynamics, Ann. Inst. H. Poincaré Sect. A (N.S.) 20 (1974), 365–372. MR 358860
- Héctor J. Sussmann, Orbits of families of vector fields and integrability of distributions, Trans. Amer. Math. Soc. 180 (1973), 171–188. MR 321133, DOI 10.1090/S0002-9947-1973-0321133-2 M. Vinogradov and I. S. Krasilshchik [1975], Russian Math. Surveys 30, 177-202.
- Alan Weinstein, The local structure of Poisson manifolds, J. Differential Geom. 18 (1983), no. 3, 523–557. MR 723816
- Jędrzej Śniatycki and Alan Weinstein, Reduction and quantization for singular momentum mappings, Lett. Math. Phys. 7 (1983), no. 2, 155–161. MR 708438, DOI 10.1007/BF00419934
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 319 (1990), 631-661
- MSC: Primary 58F05; Secondary 53C57
- DOI: https://doi.org/10.1090/S0002-9947-1990-0998124-1
- MathSciNet review: 998124