Dirac manifolds
Author:
Theodore James Courant
Journal:
Trans. Amer. Math. Soc. 319 (1990), 631-661
MSC:
Primary 58F05; Secondary 53C57
DOI:
https://doi.org/10.1090/S0002-9947-1990-0998124-1
MathSciNet review:
998124
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: A Dirac structure on a vector space
is a subspace of
with a skew form on it. It is shown that these structures correspond to subspaces of
satisfying a maximality condition, and having the property that a certain symmetric form on
vanishes when restricted to them. Dirac structures on a vector space are analyzed in terms of bases, and a generalized Cayley transformation is defined which takes a Dirac structure to an element of
. Finally a method is given for passing a Dirac structure on a vector space to a Dirac structure on any subspace.
Dirac structures on vector spaces are generalized to smooth Dirac structures on a manifold
, which are defined to be smooth subbundles of the bundle
satisfying pointwise the properties of the linear case. If a bundle
defines a Dirac structure on
, then we call
a Dirac bundle over
. A
-tensor is defined on Dirac bundles whose vanishing is the integrability condition of the Dirac structure. The basic examples of integrable Dirac structures are Poisson and presymplectic manifolds; in these cases the Dirac bundle is the graph of a bundle map, and the integrability tensors are
and
respectively. A function
on a Dirac manifold is called admissible if there is a vector field
such that the pair
is a section of the Dirac bundle
; the pair
is called an admissible section. The set of admissible functions is shown to be a Poisson algebra.
A process is given for passing Dirac structures to a submanifold
of a Dirac manifold
. The induced bracket on admissible functions on
is in fact the Dirac bracket as defined by Dirac for constrained submanifolds.
- [R] Ralph Abraham and Jerrold E. Marsden, Foundations of mechanics, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1978. Second edition, revised and enlarged; With the assistance of Tudor Raţiu and Richard Cushman. MR 515141
- 1. Gloria Alvarez-Sanchez [1986], Geometric methods of classical mechanics applied to control theory, Ph.D. thesis, University of California at Berkeley.
- 2. Coste, Dazord and Weinstein [1986], (to appear).
- 3. Pierre Dazord, Feuilletages à singularités, Nederl. Akad. Wetensch. Indag. Math. 47 (1985), no. 1, 21–39 (French). MR 783003
- [P] A. M. Dirac [1964], Lectures in quantum mechanics, Yeshiva University.
- [M] J. Gotay and J. E. Nester [1979], Ann. Inst. H. Poincaré Anal. Non Linéaire 30, 129.
- [M] J. Gotay [1983], Coisotropic imbeddings, Dirac brackets and quantization, preprint.
- [M] Mark J. Gotay, James M. Nester, and George Hinds, Presymplectic manifolds and the Dirac-Bergmann theory of constraints, J. Math. Phys. 19 (1978), no. 11, 2388–2399. MR 506712, https://doi.org/10.1063/1.523597
- [V] Victor Guillemin and Shlomo Sternberg, Geometric asymptotics, American Mathematical Society, Providence, R.I., 1977. Mathematical Surveys, No. 14. MR 0516965
- [A] J. Hanson, T. Regge, and C. Teitelboim [1976], Accad. Naz. Lincei Rome 22.
- [R] Robert Hermann, Lie algebras and quantum mechanics, W. A. Benjamin, Inc., New York, 1970. MR 0266519
- 4. André Lichnerowicz, Les variétés de Poisson et leurs algèbres de Lie associées, J. Differential Geometry 12 (1977), no. 2, 253–300 (French). MR 0501133
- [R] Robert G. Littlejohn, A guiding center Hamiltonian: a new approach, J. Math. Phys. 20 (1979), no. 12, 2445–2458. MR 553507, https://doi.org/10.1063/1.524053
- 5. Robert G. Littlejohn, Hamiltonian formulation of guiding center motion, Phys. Fluids 24 (1981), no. 9, 1730–1749. MR 628941, https://doi.org/10.1063/1.863594
- [K] K. Mackenzie, Lie groupoids and Lie algebroids in differential geometry, London Mathematical Society Lecture Note Series, vol. 124, Cambridge University Press, Cambridge, 1987. MR 896907
- [J] Jerrold E. Marsden and Tudor Ratiu, Reduction of Poisson manifolds, Lett. Math. Phys. 11 (1986), no. 2, 161–169. MR 836071, https://doi.org/10.1007/BF00398428
- 6. Jean Martinet, Sur les singularités des formes différentielles, Ann. Inst. Fourier (Grenoble) 20 (1970), no. fasc. 1, 95–178 (French, with English summary). MR 0286119
- 7. Richard Montgomery [1985], personal communication.
- 8. Yong-Geun Oh, Some remarks on the transverse Poisson structures of coadjoint orbits, Lett. Math. Phys. 12 (1986), no. 2, 87–91. MR 858269, https://doi.org/10.1007/BF00416457
- [S] Stephen Omohundro, Geometric Hamiltonian structures and perturbation theory, Local and global methods of nonlinear dynamics (Silver Spring, Md., 1984) Lecture Notes in Phys., vol. 252, Springer, Berlin, 1986, pp. 91–120. MR 856947, https://doi.org/10.1007/BFb0018331
- 9. -[1985], Geometric perturbation theory and plasma physics, Ph.D. thesis, University of California at Berkeley.
- 10. Spyros N. Pnevmatikos (ed.), Singularities & dynamical systems, North-Holland Mathematics Studies, vol. 103, North-Holland Publishing Co., Amsterdam, 1985. MR 806173
- 11. Spyros N. Pnevmatikos, Structures hamiltoniennes en présence de contraintes, C. R. Acad. Sci. Paris Sér. A-B 289 (1979), no. 16, A799–A802 (French, with English summary). MR 558801
- 12. Spyros N. Pnevmatikos, Structures symplectiques singulières génériques, Ann. Inst. Fourier (Grenoble) 34 (1984), no. 3, 201–218 (French, with English summary). MR 762699
- [J] Jędrzej Śniatycki, Dirac brackets in geometric dynamics, Ann. Inst. H. Poincaré Sect. A (N.S.) 20 (1974), 365–372. MR 0358860
- 13. Héctor J. Sussmann, Orbits of families of vector fields and integrability of distributions, Trans. Amer. Math. Soc. 180 (1973), 171–188. MR 0321133, https://doi.org/10.1090/S0002-9947-1973-0321133-2
- [A] M. Vinogradov and I. S. Krasilshchik [1975], Russian Math. Surveys 30, 177-202.
- [A] Alan Weinstein, The local structure of Poisson manifolds, J. Differential Geom. 18 (1983), no. 3, 523–557. MR 723816
- [A] Jędrzej Śniatycki and Alan Weinstein, Reduction and quantization for singular momentum mappings, Lett. Math. Phys. 7 (1983), no. 2, 155–161. MR 708438, https://doi.org/10.1007/BF00419934
Retrieve articles in Transactions of the American Mathematical Society with MSC: 58F05, 53C57
Retrieve articles in all journals with MSC: 58F05, 53C57
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1990-0998124-1
Keywords:
Poisson manifold,
symplectic manifold,
Dirac brackets,
constrained dvnamics,
Lie algebroid
Article copyright:
© Copyright 1990
American Mathematical Society


