## Dirac manifolds

HTML articles powered by AMS MathViewer

- by Theodore James Courant PDF
- Trans. Amer. Math. Soc.
**319**(1990), 631-661 Request permission

## Abstract:

A Dirac structure on a vector space $V$ is a subspace of $V$ with a skew form on it. It is shown that these structures correspond to subspaces of $V \oplus {V^{\ast }}$ satisfying a maximality condition, and having the property that a certain symmetric form on $V \oplus {V^{\ast }}$ vanishes when restricted to them. Dirac structures on a vector space are analyzed in terms of bases, and a generalized Cayley transformation is defined which takes a Dirac structure to an element of $O(V)$. Finally a method is given for passing a Dirac structure on a vector space to a Dirac structure on any subspace. Dirac structures on vector spaces are generalized to smooth Dirac structures on a manifold $P$, which are defined to be smooth subbundles of the bundle $TP \oplus {T^{\ast }}P$ satisfying pointwise the properties of the linear case. If a bundle $L \subset TP \oplus {T^{\ast }}P$ defines a Dirac structure on $P$, then we call $L$ a Dirac bundle over $P$. A $3$-tensor is defined on Dirac bundles whose vanishing is the integrability condition of the Dirac structure. The basic examples of integrable Dirac structures are Poisson and presymplectic manifolds; in these cases the Dirac bundle is the graph of a bundle map, and the integrability tensors are $[B,B]$ and $d\Omega$ respectively. A function $f$ on a Dirac manifold is called admissible if there is a vector field $X$ such that the pair $(X,df)$ is a section of the Dirac bundle $L$; the pair $(X,df)$ is called an admissible section. The set of admissible functions is shown to be a Poisson algebra. A process is given for passing Dirac structures to a submanifold $Q$ of a Dirac manifold $P$. The induced bracket on admissible functions on $Q$ is in fact the Dirac bracket as defined by Dirac for constrained submanifolds.## References

- Ralph Abraham and Jerrold E. Marsden,
*Foundations of mechanics*, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1978. Second edition, revised and enlarged; With the assistance of Tudor Raţiu and Richard Cushman. MR**515141**
Gloria Alvarez-Sanchez [1986], - Pierre Dazord,
*Feuilletages à singularités*, Nederl. Akad. Wetensch. Indag. Math.**47**(1985), no. 1, 21–39 (French). MR**783003**
A. M. Dirac [1964], - Mark J. Gotay, James M. Nester, and George Hinds,
*Presymplectic manifolds and the Dirac-Bergmann theory of constraints*, J. Math. Phys.**19**(1978), no. 11, 2388–2399. MR**506712**, DOI 10.1063/1.523597 - Victor Guillemin and Shlomo Sternberg,
*Geometric asymptotics*, Mathematical Surveys, No. 14, American Mathematical Society, Providence, R.I., 1977. MR**0516965**
J. Hanson, T. Regge, and C. Teitelboim [1976], Accad. Naz. Lincei Rome - Robert Hermann,
*Lie algebras and quantum mechanics*, W. A. Benjamin, Inc., New York, 1970. MR**0266519** - André Lichnerowicz,
*Les variétés de Poisson et leurs algèbres de Lie associées*, J. Differential Geometry**12**(1977), no. 2, 253–300 (French). MR**501133** - Robert G. Littlejohn,
*A guiding center Hamiltonian: a new approach*, J. Math. Phys.**20**(1979), no. 12, 2445–2458. MR**553507**, DOI 10.1063/1.524053 - Robert G. Littlejohn,
*Hamiltonian formulation of guiding center motion*, Phys. Fluids**24**(1981), no. 9, 1730–1749. MR**628941**, DOI 10.1063/1.863594 - K. Mackenzie,
*Lie groupoids and Lie algebroids in differential geometry*, London Mathematical Society Lecture Note Series, vol. 124, Cambridge University Press, Cambridge, 1987. MR**896907**, DOI 10.1017/CBO9780511661839 - Jerrold E. Marsden and Tudor Ratiu,
*Reduction of Poisson manifolds*, Lett. Math. Phys.**11**(1986), no. 2, 161–169. MR**836071**, DOI 10.1007/BF00398428 - Jean Martinet,
*Sur les singularités des formes différentielles*, Ann. Inst. Fourier (Grenoble)**20**(1970), no. fasc. 1, 95–178 (French, with English summary). MR**286119**
Richard Montgomery [1985], personal communication.
- Yong-Geun Oh,
*Some remarks on the transverse Poisson structures of coadjoint orbits*, Lett. Math. Phys.**12**(1986), no. 2, 87–91. MR**858269**, DOI 10.1007/BF00416457 - Stephen Omohundro,
*Geometric Hamiltonian structures and perturbation theory*, Local and global methods of nonlinear dynamics (Silver Spring, Md., 1984) Lecture Notes in Phys., vol. 252, Springer, Berlin, 1986, pp. 91–120. MR**856947**, DOI 10.1007/BFb0018331
—[1985], - Spyros N. Pnevmatikos (ed.),
*Singularities & dynamical systems*, North-Holland Mathematics Studies, vol. 103, North-Holland Publishing Co., Amsterdam, 1985. MR**806173** - Spyros N. Pnevmatikos,
*Structures hamiltoniennes en présence de contraintes*, C. R. Acad. Sci. Paris Sér. A-B**289**(1979), no. 16, A799–A802 (French, with English summary). MR**558801** - Spyros N. Pnevmatikos,
*Structures symplectiques singulières génériques*, Ann. Inst. Fourier (Grenoble)**34**(1984), no. 3, 201–218 (French, with English summary). MR**762699** - Jędrzej Śniatycki,
*Dirac brackets in geometric dynamics*, Ann. Inst. H. Poincaré Sect. A (N.S.)**20**(1974), 365–372. MR**358860** - Héctor J. Sussmann,
*Orbits of families of vector fields and integrability of distributions*, Trans. Amer. Math. Soc.**180**(1973), 171–188. MR**321133**, DOI 10.1090/S0002-9947-1973-0321133-2
M. Vinogradov and I. S. Krasilshchik [1975], Russian Math. Surveys - Alan Weinstein,
*The local structure of Poisson manifolds*, J. Differential Geom.**18**(1983), no. 3, 523–557. MR**723816** - Jędrzej Śniatycki and Alan Weinstein,
*Reduction and quantization for singular momentum mappings*, Lett. Math. Phys.**7**(1983), no. 2, 155–161. MR**708438**, DOI 10.1007/BF00419934

*Geometric methods of classical mechanics applied to control theory*, Ph.D. thesis, University of California at Berkeley. Coste, Dazord and Weinstein [1986], (to appear).

*Lectures in quantum mechanics*, Yeshiva University. J. Gotay and J. E. Nester [1979], Ann. Inst. H. Poincaré Anal. Non Linéaire

**30**, 129. J. Gotay [1983],

*Coisotropic imbeddings, Dirac brackets and quantization*, preprint.

**22**.

*Geometric perturbation theory and plasma physics*, Ph.D. thesis, University of California at Berkeley.

**30**, 177-202.

## Additional Information

- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**319**(1990), 631-661 - MSC: Primary 58F05; Secondary 53C57
- DOI: https://doi.org/10.1090/S0002-9947-1990-0998124-1
- MathSciNet review: 998124