Local behavior of solutions of quasilinear elliptic equations with general structure
HTML articles powered by AMS MathViewer
- by J.-M. Rakotoson and William P. Ziemer
- Trans. Amer. Math. Soc. 319 (1990), 747-764
- DOI: https://doi.org/10.1090/S0002-9947-1990-0998128-9
- PDF | Request permission
Abstract:
This paper is motivated by the observation that solutions to certain variational inequalities involving partial differential operators of the form $\operatorname {div} A(x,u,\nabla u) + B(x,u,\nabla u)$, where $A$ and $B$ are Borel measurable, are solutions to the equation $\operatorname {div} A(x,u,\nabla u) + B(x,u,\nabla u) = \mu$ for some nonnegative Radon measure $\mu$. Among other things, it is shown that if $u$ is a Hölder continuous solution to this equation, then the measure $\mu$ satisfies the growth property $\mu [B(x,r)] \leqslant M{r^{n - p + \varepsilon }}$ for all balls $B(x,r)$ in ${{\mathbf {R}}^n}$. Here $\varepsilon$ depends on the Hölder exponent of $u$ while $p > 1$ is given by the structure of the differential operator. Conversely, if $\mu$ is assumed to satisfy this growth condition, then it is shown that $u$ satisfies a Harnack-type inequality, thus proving that $u$ is locally bounded. Under the additional assumption that $A$ is strongly monotonic, it is shown that $u$ is Hölder continuous.References
- D. R. Adams, Traces of potentials arising from translation invariant operators, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 25 (1971), 203–217. MR 287301
- E. DiBenedetto and Neil S. Trudinger, Harnack inequalities for quasiminima of variational integrals, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 4, 295–308 (English, with French summary). MR 778976
- Mariano Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems, Annals of Mathematics Studies, vol. 105, Princeton University Press, Princeton, NJ, 1983. MR 717034
- Ronald Gariepy and William P. Ziemer, A regularity condition at the boundary for solutions of quasilinear elliptic equations, Arch. Rational Mech. Anal. 67 (1977), no. 1, 25–39. MR 492836, DOI 10.1007/BF00280825
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190, DOI 10.1007/978-3-642-61798-0
- L. I. Hedberg and Th. H. Wolff, Thin sets in nonlinear potential theory, Ann. Inst. Fourier (Grenoble) 33 (1983), no. 4, 161–187. MR 727526
- F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415–426. MR 131498, DOI 10.1002/cpa.3160140317
- Olga A. Ladyzhenskaya and Nina N. Ural’tseva, Linear and quasilinear elliptic equations, Academic Press, New York-London, 1968. Translated from the Russian by Scripta Technica, Inc; Translation editor: Leon Ehrenpreis. MR 0244627
- Hans Lewy and Guido Stampacchia, On the smoothness of superharmonics which solve a minimum problem, J. Analyse Math. 23 (1970), 227–236. MR 271383, DOI 10.1007/BF02795502 J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris, 1969.
- Norman G. Meyers and Alan Elcrat, Some results on regularity for solutions of non-linear elliptic systems and quasi-regular functions, Duke Math. J. 42 (1975), 121–136. MR 417568
- J. H. Michael and William P. Ziemer, Interior regularity for solutions to obstacle problems, Nonlinear Anal. 10 (1986), no. 12, 1427–1448. MR 869551, DOI 10.1016/0362-546X(86)90113-6
- B. Michaux, J.-M. Rakotoson, and J. Shen, On the existence and regularity of solutions of a quasilinear mixed equation of Leray-Lions type, Acta Appl. Math. 12 (1988), no. 3, 287–316. MR 973948, DOI 10.1007/BF00046884 —, On the approximation of a quasilinear mixed problem, Preprint, Institute for Appl. Math. and Sci. Comp., #8808, 1988, MMAN (to appear).
- Jean-Michel Rakotoson, Réarrangement relatif dans les équations elliptiques quasi-linéaires avec un second membre distribution: application à un théorème d’existence et de régularité, J. Differential Equations 66 (1987), no. 3, 391–419 (French, with English summary). MR 876805, DOI 10.1016/0022-0396(87)90026-X
- J.-M. Rakotoson and R. Temam, Relative rearrangement in quasilinear elliptic variational inequalities, Indiana Univ. Math. J. 36 (1987), no. 4, 757–810. MR 916743, DOI 10.1512/iumj.1987.36.36043
- James Serrin, Local behavior of solutions of quasi-linear equations, Acta Math. 111 (1964), 247–302. MR 170096, DOI 10.1007/BF02391014
- Neil S. Trudinger, On Harnack type inequalities and their application to quasilinear elliptic equations, Comm. Pure Appl. Math. 20 (1967), 721–747. MR 226198, DOI 10.1002/cpa.3160200406
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 319 (1990), 747-764
- MSC: Primary 35J60; Secondary 35B65, 35D10, 35J70
- DOI: https://doi.org/10.1090/S0002-9947-1990-0998128-9
- MathSciNet review: 998128