Topological entropy of fixed-point free flows
HTML articles powered by AMS MathViewer
- by Romeo F. Thomas
- Trans. Amer. Math. Soc. 319 (1990), 601-618
- DOI: https://doi.org/10.1090/S0002-9947-1990-1010414-5
- PDF | Request permission
Abstract:
Topological entropy was introduced as an invariant of topological conjugacy and also as an analogue of measure theoretic entropy. Topological entropy for one parameter flows on a compact metric spaces is defined by Bowen. General statements are proved about this entropy, but it is not easy to calculate the topological entropy, and to show it is invariant under conjugacy. For all this I would like to try to pose a new direction and study a definition for the topological entropy that involves handling the technical difficulties that arise from allowing reparametrizations of orbits. Some well-known results are proved as well using this definition. These results enable us to prove some results which seem difficult to prove using Bowenβs definition. Also we show here that this definition is equivalent to Bowenβs definition for any flow without fixed points on a compact metric space. Finally, it is shown that the topological entropy of an expansive flow can be defined globally on a local cross sections.References
- Rufus Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc. 153 (1971), 401β414. MR 274707, DOI 10.1090/S0002-9947-1971-0274707-X
- Rufus Bowen, Periodic orbits for hyperbolic flows, Amer. J. Math. 94 (1972), 1β30. MR 298700, DOI 10.2307/2373590
- Rufus Bowen, Entropy-expansive maps, Trans. Amer. Math. Soc. 164 (1972), 323β331. MR 285689, DOI 10.1090/S0002-9947-1972-0285689-X β, Topological entropy and Axiom $A$, Proc. Sympos. Pure Math., vol. 14, Amer. Math. Soc., Providence, R. I., 1970, pp. 23-41.
- Rufus Bowen and Peter Walters, Expansive one-parameter flows, J. Differential Equations 12 (1972), 180β193. MR 341451, DOI 10.1016/0022-0396(72)90013-7
- Rufus Bowen, Symbolic dynamics for hyperbolic flows, Amer. J. Math. 95 (1973), 429β460. MR 339281, DOI 10.2307/2373793
- John E. Franke and James F. Selgrade, Hyperbolicity and chain recurrence, J. Differential Equations 26 (1977), no.Β 1, 27β36. MR 467834, DOI 10.1016/0022-0396(77)90096-1
- John E. Franke and James F. Selgrade, Abstract $\omega$-limit sets, chain recurrent sets, and basic sets for flows, Proc. Amer. Math. Soc. 60 (1976), 309β316 (1977). MR 423423, DOI 10.1090/S0002-9939-1976-0423423-X
- John L. Kelley, General topology, D. Van Nostrand Co., Inc., Toronto-New York-London, 1955. MR 0070144
- H. B. Keynes and M. Sears, Real-expansive flows and topological dimension, Ergodic Theory Dynam. Systems 1 (1981), no.Β 2, 179β195. MR 661818, DOI 10.1017/s0143385700009214
- William L. Reddy, Expansive canonical coordinates are hyperbolic, Topology Appl. 15 (1983), no.Β 2, 205β210. MR 686097, DOI 10.1016/0166-8641(83)90038-X
- S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747β817. MR 228014, DOI 10.1090/S0002-9904-1967-11798-1
- Romeo F. Thomas, Entropy of expansive flows, Ergodic Theory Dynam. Systems 7 (1987), no.Β 4, 611β625. MR 922368, DOI 10.1017/S0143385700004235
- Romeo F. Thomas, Topological stability: some fundamental properties, J. Differential Equations 59 (1985), no.Β 1, 103β122. MR 803089, DOI 10.1016/0022-0396(85)90140-8
- Romeo F. Thomas, Stability properties of one-parameter flows, Proc. London Math. Soc. (3) 45 (1982), no.Β 3, 479β505. MR 675418, DOI 10.1112/plms/s3-45.3.479
- Hassler Whitney, Regular families of curves, Ann. of Math. (2) 34 (1933), no.Β 2, 244β270. MR 1503106, DOI 10.2307/1968202
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 319 (1990), 601-618
- MSC: Primary 58F25; Secondary 28D20, 54C70, 54H20, 58F11
- DOI: https://doi.org/10.1090/S0002-9947-1990-1010414-5
- MathSciNet review: 1010414