Defect relations for degenerate meromorphic maps
HTML articles powered by AMS MathViewer
- by Wan Xi Chen
- Trans. Amer. Math. Soc. 319 (1990), 499-515
- DOI: https://doi.org/10.1090/S0002-9947-1990-1010882-9
- PDF | Request permission
Abstract:
Using a concept called subgeneral position and adapting a weight function created by E. I. Nochka, this work proves the Cartan’s conjecture on defect relations for a degenerate meromorphic map from a parabolic manifold into a projective space.References
- H. Cartan, Sur les zéros des combinaisons linéaires de $p$ fonctions holomorphes donnés, Mathematica (Cluj) 7 (1933), 80-103.
W. Chen, Cartan’s conjecture: defect relations for meromorphic maps from parabolic manifold to projective space, Ph.D. dissertation, Notre Dame University, 1987.
—, On subgeneral position, Notre Dame Math. Preprints, #100, 1987.
- E. I. Nochka, Defect relations for meromorphic curves, Izv. Akad. Nauk Moldav. SSR Ser. Fiz.-Tekhn. Mat. Nauk 1 (1982), 41–47, 79 (Russian). MR 672395
- E. I. Nochka, On a theorem from linear algebra, Izv. Akad. Nauk Moldav. SSR Ser. Fiz.-Tekhn. Mat. Nauk 3 (1982), 29–33 (Russian). MR 699689
- Wilhelm Stoll, The Ahlfors-Weyl theory of meromorphic maps on parabolic manifolds, Value distribution theory (Joensuu, 1981) Lecture Notes in Math., vol. 981, Springer, Berlin, 1983, pp. 101–219. MR 699135, DOI 10.1007/BFb0066385
- Wilhelm Stoll, Value distribution theory for meromorphic maps, Aspects of Mathematics, E7, Friedr. Vieweg & Sohn, Braunschweig, 1985. MR 823236, DOI 10.1007/978-3-663-05292-0
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 319 (1990), 499-515
- MSC: Primary 32H30; Secondary 30D35, 32H25
- DOI: https://doi.org/10.1090/S0002-9947-1990-1010882-9
- MathSciNet review: 1010882