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THE vx -PERIODIC HOMOTOPY GROUPS
OF AN UNSTABLE SPHERE AT ODD PRIMES

ROBERT D. THOMPSON

Abstract. The mod p vx -periodic homotopy groups of a space X are de-

fined by considering the homotopy classes of maps of a Moore space into X

and then inverting the Adams self map. In this paper we compute the mod p vx -

periodic homotopy groups of an odd dimensional sphere, localized at an odd

prime. This is done by showing that these groups are isomorphic to the stable

mod p u,-periodic homotopy groups of 5£ , the  2(p - l)n   skele-

ton of the classifying space for the symmetric group  X  .   There is a map

Sl2n+lS2n+[ -* Ci°°(J A SZ^-""), where J is a spectrum constructed from

connective /¿-theory, and the image in homotopy is studied.

1. INTRODUCTION

The main objective of this paper is to compute the vx -periodic homotopy

groups of an unstable sphere at odd primes. This is done by carrying out an

odd primary analogue of a program developed for p = 2 by Mark Mahowald

[Ml]. As is often the case, the calculations done here at odd primes are simpler

than their p = 2 counterparts, so another purpose of this work could be to

illuminate the p = 2 case.

For a 2-connected space X the vx -periodic homotopy groups of X are de-

fined as follows. Let Mn denote a mod p Moore space with top cell in di-

mension zz, where p is an odd prime. Let nn(X; Z/p) denote the mod p

homotopy groups of X, i.e., the homotopy classes of maps from M" to X.

These homotopy groups are Z/p vector spaces. In his seminal paper J(X)-

IV, [A], J. F. Adams constructed a map vx : M2{p~X)+n — M" , n > 4, which

induces an isomorphism in ^-theory. In fact, it is shown in [CN] that v,

can be constructed for n = 3. We can define a Z/p[v,]-module structure

on n9(X; Z/p) by setting vxa = a o vx for each a: M" —> X. Then the

mod p vx -periodic homotopy groups of X are defined to be

nfX;Z/p)®z/pív¡]Z/p[vx,v;X],

which we denote simply by vx~ nt(X; Z/p). Inverting vx annihilates the sub-

group of vx -torsion elements and the resulting periodic groups are in general

much smaller and hopefully tractable.
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To compute vx XnfS " h ; Z/p), we show that it is isomorphic to the stable

^-periodic homotopy groups of (Bl. )2n{p~X), where (BZ )2n{p~X) denotes the

2zz(p-l) skeleton of the classifying space for the symmetric group on p objects,

localized at p. Set q = 2(p - 1). Denoting tt00!00^) by Q(X), there is a

Hopf-James-Snaith map

s:a2n+xS2n+X^Q((BZpf")

and the main theorem of this paper is

Theorem 1.1.

V v;Xnfn2n+lS2n+X ; Z/p) -+ v;xnfQ((BlpD ; Z/p)

is an isomorphism for all n > 1.

This is proved by induction on the dimension of the sphere, after first com-

puting the vx -periodic homotopy groups of the fiber of the double suspension

map. More precisely, let W(n) denote the fiber of the map S n~ —► Q2S "+1 .

In [C], Fred Cohen constructs a map W(n) -> Q(M2np'2). In §2, following

Mahowald [Ml, M2, MT], we show that this map induces an isomorphism of

vx -periodic homotopy groups. This is proved by constructing a tower of fi-

brations for W(n) which yields a spectral sequence having as its E2-term the

homology of a certain subquotient of the lambda algebra. This E2-term was

analyzed in detail in [M2] for p = 2 and in [HM1] for p odd and was shown

to be isomorphic to the stable E2-term for the Moore space after inverting vx .

We show that Cohen's map induces this isomorphism, yielding the result in

homotopy. The significance of this is that the unstable vx -periodic homotopy

groups of the space Q(M) are the stable vx -periodic homotopy groups of M,

and these stable groups have been calculated by H. Miller in [Mil].

The stable vx -periodic homotopy groups of a spectrum are described very

conveniently in terms of /-homology. The spectrum / is a certain spectrum

constructed from connective K-theory such that the homotopy groups of / at

an odd prime are isomorphic to the image of the classical /-homomorphism

[W, A]. In §3 the basic properties of the J spectrum and the computation of

JfBlA") are reviewed and the following explicit corollary is derived:

Corollary 1.2. vxxnfCl2n+xS2n+x ;Z/p)  is isomorphic to a free module over

Z/p[vx, vA~ ] on four generators in dimensions qn - 2, qn-l, qn - 1, qn .

So far we have only considered homotopy with Z/p coefficients. We would

like to describe the homotopy classes in nfS n+ ) with integral coefficients

(localized at p) which are detected by If(B'Lp)qn). The groups JfBlfpn) are

cyclic and concentrated in dimensions of the form qk - 1 and qk - 2. The

following is proved in §4.
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Theorem 1.3. The composite

nqk_x(n2"+XS2"+X)^nSqk_x(B^)^Jgk_x(B^)

is surjective for k > 1. The composite

7lak-liÇÎ S )^nqk-2ÍB     )^Jqk-liB     )

is surjective if k > n + v(k).

This appears as conjecture 1.5.21(a) in [Rl] and there is a discussion there

and in [R2] as to how it pertains to calculations with the EHP spectral sequence.

Theorem 1.3 is closely related to results obtained independently by M. Bender-

sky [Be] and B. Gray [Gl, G2].

This paper is distilled from the author's University of Washington Ph.D.

thesis. The author wishes to thank Doug Ravenel, Mark Mahowald, Haynes

Miller, and Don Davis for helpful discussions on this and other related topics.

Also the author wishes to thank the referee for many helpful suggestions; in

particular the referee and Mark Mahowald suggested the proof given here of

2.29, which is an improvement over the original proof.

2. The proof of Theorem 1.1

Assume that all spaces are localized at a fixed odd prime p . Theorem 1.1 is

proved by analyzing the fiber of double suspension. More precisely, let W(n)

denote the fiber of the map
S2"'' ^Q2S2n+x

which induces the double suspension homomorphism. We have a commutative

diagram
C22»-V(ZJ)  -►  Q2"-1^2"-1   -► Q2n+lS2n+X

(2.1)

Q(Mqn-x)   -► Q(BZl{"-x)) -    —    Q(BJfDn)

»2«-l

p i «.v       p

where the top row is QA"~' applied to the fiber sequence defining W(n), and

the bottom row is a quasifibration because the functor Q converts cofibrations

to quasifibrations. The map wn is the induced map of fibers. The commuta-

tivity of the right-hand square is proved in [Ku]. Note that W(\) is homotopy

equivalent to Q30S3. By applying v~xnf ; Z/p) to diagram (2.1) we get a

long exact sequence in vx -periodic homotopy groups from the top row, and this

maps to a long exact sequence for the bottom row. Therefore Theorem 1.1 fol-

lows immediately from induction on n and the five lemma and the following

theorem:

Theorem 2.2. The induced homomorphism

wt: v~ nfQ "~ I

is an isomorphism for n > 1.

wt:vx XnfÇl2n-xW(n);Zlp)-+vx Xnt(Q(M'",-X);Z/p)
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The motivation for Theorem 2.2 follows from an algebraic version of the

theorem involving the lambda algebra [M2, HM1]. In order to explain this we

will begin by summarizing some basic facts about the lambda algebra.

A subquotient of the lambda algebra. For an odd prime p the lambda algebra

A isabigraded Z/p-algebra generated by elements {X¡} for i > 1 and subject

to certain multiplicative relations called "Adem relations." See [6A] or [HM1]

for details.

We will index elements by (s, t) where s is the homological degree and

t - s is the stem degree. Thus X¡ has bidegree (1, qi) and p¡ has bidegree

(1, qi + 1). Using the Adem relations one can show that A has a Z/p basis

consisting of monomials in X¡ and p¡ which are admissible; in other words

which satisfy the following conditions:

n (i) whenever X¡Xj or X¡Pj occurs then ;' < pi,

(ii) whenever pAX- or p¡p. occurs then j <pi.

A is a differential graded algebra and A is filtered by subcomplexes A(«),

n > 0, defined by

(i) If n = 2m, A(n) is the subspace spanned by admissible monomials

beginning with X¡ for z < m or p¡ for i < m .

(ii) If n = 2m + 1, A(zz) is the subspace spanned by admissible monomials

beginning with X¡ for i < m or p¡ for i < m.

In fact A(«) turns out to be a subalgebra. For a proof see [HM1]. The

relevance of A(«) to homotopy groups is the topic of [6A]. There it is proved

that A(n) is the Ej-term of an unstable Adams spectral sequence for S" . The

inclusion A(zz) —» A(n + 1) is the map of E,-terms induced by the suspension

map S" —► ÍIS"+ . We will go into more detail about unstable Adams spectral

sequences later, but for now we confine our attention to the algebraic picture.

Define A(W(n)) to be the quotient chain complex

A(2z2+1)/A(2zz-1).

Thus we have a short exact sequence of chain complexes

(2.4) 0 -+ A(2zz - 1) -► A(2zz + 1) - A(W(n)) -* 0.

By (2.3) we have short exact sequences of chain complexes

(2.5) 0^A(2zz- I)-* A(2n) ■*+JlnA(2pn - l)->0,

(2.6) 0 -> A(2n) - A(2zz + 1) -Í» pnA(2pn + 1) -► 0.

Here XnA(2pn - 1) is defined to be a 1-dimensional Z/p vector space

with basis element Xn in bidegree (0,0) and trivial differential, tensored with

A(2pzz-1). pnA(2pn + l) is defined similarly only we give pn bidegree (0, 1).
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The maps h and h are defined by

if v ^ Xna for any a,iO        if v ,¿ Xa

t /La    if z/ = /La
h(i,

for some a,

{0        if v / p„a for any a,

pna   if v = pna for some a.

It is easy to check that (2.5) and (2.6) are indeed short exact sequences of

chain complexes. The reader familiar with the odd primary EHP sequence will

immediately recognize (2.5) and (2.6) as algebraic analogues.

Furthermore we have the following diagram of chain complexes:

0 0 0

1 I 1
0-»A(2/i-l)->       A(2n)       ±* XnA(2pn - 1) -» 0

i« I I
(2.7) o^A(2z!-l)^    A(2n + l)    ->    A(W(n))     ^0

0        -^/znA(2p«+l)^p„A(2pzz+ l)-»0

0 0

which reveals an isomorphism

(2.8) A(IF(zz))=InA(2p«- 1) ® pnA(2pn + 1).

Since Xn and pn are Aw and pn reindexed, the above groups have been indexed

so that for each W(n), the lower left corner occurs at (s, t) = (0,0); i.e.,

W(n)s'' = 0 if s < 0 or t - s < 0 and IT(zi)00 = Z/p .

In [HM1] the differential in A(W(n)) is described in terms of the splitting

(2.8) as follows:

Proposition 2.9 (Proposition 2.10 of [HM1]). Let n > 0, a e A(2pn - 1),

v e A(2pn +1). Then in A(W(n))

d(Xna + pnv) = Xfda + p0u) - p„du.

From this it follows that the inclusion given by

Ka + ßnV-*J-n+la + fin+lV

is a map of chain complexes of bidegree (0, 0) and induces a map in homology

(2.10) Hs''(A(W(n))) -» Hs''(A(W(n + 1))).

Furthermore \J„MWin)) is an E,-term for the stable homotopy of the Moore

spectrum M.

We can now state the main theorem of [HM1].
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Theorem 2.11 (Metastability theorem of [HM1]). For 1 < n < k the induced

map in homology
Hs't(A(W(n)))-*Hs't(A(W(k)))

is an isomorphism for

t-s < 2(p2 - l)(s - 2) + pqn - 2p - 2

and an epimorphism for

t-s < 2(p2 - l)(s - 2) + pqn - 2p - 2.

In the (t-s, s) plane this is an isomorphism above a line of slope l/2(p2-l).

A Z/pfvJ-module structure is defined on A(W(n)) as follows:

Definition 2.12. If Xna + pnv e A(W(n)) define

vx (Xna + pnv) = -pn(Xxa + pxv).

It is readily verified using the Adem relations that this defines vx : A(W(n)) —►

A(W(n)) asabidegree (1,(7+1) chain map which actually maps A(W(n)) to

the image of A(W(n - 1)). Since the map vx has (I, q + I) for bidegree, if

x e A(W(n)), vxx is in the range of isomorphism for Theorem 2.11 for some

k . So Theorem 2.11 has the following corollary:

Corollary 2.13. For 1 < n < k the induced map

v-xHSJ(A(W(n))) -+ v;xHs''(A(W(k)))

is an isomorphism.

Unstable Adams resolutions. To prove Theorem 2.2 we will use an unstable

Adams spectral sequence type of approach. Unfortunately if we try to con-

struct a spectral sequence for computing the homotopy groups of W(n) using

the standard machinery of [BK], the E2-term which would result would not

resemble H* ' *(A(W(n))). This difficulty will be avoided however by using

Mahowald's construction of the "resolution of the fiber".

We begin by reviewing the general notion of a resolution of a space.

Definition 2.14. Let X be space which is p-local and simply connected. By a

resolution of X we mean a diagram

■ • • -> x3 % x2 ^ xx h x0

î       T       Î       II
F3      F2      Fx      F0

such that:

(i) Each F¡ is a generalized Eilenberg-Mac Lane space K(Vf where V¡ is a

locally finite graded Z/p vector space. If VJ denotes the homogeneous part of

a graded Z/p vector space V in degree j then K(V) = T[ .K(VJ, j).

(ii) Each F¡ —► X. -^ X¡_x is a principal fibration with classifying map

g¡_x:X¡_x^BFl.
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(iii) There are maps fi'..: X —► X¡ and commutative diagrams

1 P<-1

&      X,

xA'   x,_,

such that the induced map /: X —► holimX( is a p-completion.

Definition 2.15. Given a resolution of a space X there is a spectral sequence

defined by

Esx''(X) = nt_s(Ff,    where dx:Esx''(X)^Esx+x''(X)

is the homomorphism induced by the composite

There is a decreasing filtration of ntX defined by

Fj7itX = ker(n.X -» ti,*,)

where C\j>0Fj7ttX = 0 and the E^-term will be the graded vector space asso-

ciated to the filtration defined above.

Of course in the generality of Definitions 2.14 and 2.15 it is difficult to say

anything systematic about the E2-term for an arbitrary space or even a family of

spaces satisfying certain "nice" conditions. Furthermore such resolutions need

not satisfy any "functoriality." A more strict notion would be as follows:

Definition 2.16. A resolution of a space X is called an Adams resolution if, in

addition to (i)-(iii) above, we require:

(iv)kerp* = kerf*,
(v) y¿* is surjective.

Notation. We will use the notation of [Ml] and [MT]. Thus a resolution of

X will be denoted by X' and the fibrations involved will be denoted by

FfXf^XfXf^X^Xf

or simply

FfX)-> XfX)-> X¡_X(X)

if there is no ambiguity as to which resolution we are considering. Note that if

X' is a resolution of X, then we can obtain a resolution of Q X by applying

Í2 to I'. However, if X' is an Adams resolution then the resolution ClkX'

will, in general, zzoi be an Adams resolution.

Definition 2.17. A map of resolutions fi' : X' -* Y' covering a map /: X —►

F is a sequence of maps fi : X (X) -» X (Y) making the following diagram
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commute for s > 0 :

(2.18)

The following is proved in [Ml]:

Proposition 2.19. If fi: X —> Y is a map and X' is an Adams resolution of X,

then, for any resolution Y' of Y, there is a map of resolutions

f':X -+Y'

which covers fi.

Thus Proposition 2.19 gives an example of the "functorial" behavior of

Adams resolutions.

Remark. A map f : X' —* Y covering a map /: X —► Y gives rise to a map

of spectral sequences simply by considering the map of fibers induced by the

diagram
FS(X)^XS(X)^XS_X(X)

if if i fs-X
FS(Y)-+XS(Y)-+XS_X(Y)

fs then induces a map of chain complexes:

ESX''(X){Q Esf'(Y).

In general it would be difficult to get a handle on the induced map of E2-

terms since these E2-terms would not have any nice description. However in

the special cases to which we will be applying these notions we will be able to

determine the induced map of E2-terms in a range of interest.

Now we give Mahowald's construction of the resolution of the fiber of a map.

Proposition 2.20. Let f : X' —► Y' be a map of resolutions covering a map

f: X —*■ Y and let (f) denote the homotopy theoretic fiber of fi. Then there is

a resolution of (f), denoted by (fi)' and a short exact sequence

0 _ E\-l''(Y) -* E\\(fi)) - E\''(X) - 0.

In the corresponding long exact sequence

(2.21) • • - - Esf'(fi) -> ES2'(X) ± ES2-'(Y) -» E*+1 ''(/)

the boundary map d is the map of E2-terms induced by fi'.

The construction of (/)' is given in [Ml]. The second statement about the

boundary map d is used implicitly in [Ml] and is proved in [MT] along with

a proof of the following proposition.

XS+X(X)J^XS+X(Y)

i i

XfX)   A   XfY)
î î
X       I*       Y
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Definition 2.22. A resolution X of a space X is called minimal if Esf'(X') =

E\''(X').

Proposition 2.23. For any resolution X', there is a minimal resolution of SIX,

denoted by ÍIX', such that there are lifts of the identity map of Q.X to

f : il(X') -► SIX'   and   g : OX' -+ íl(X')

with f and g' inducing isomorphisms in Esfl.

A resolution of W(n). Returning to our discussion of the homotopy of W(n)

we construct a resolution for W(n) as follows:

Proposition 2.24. There exists a resolution of W(n), denoted by W(n)', with

E2-term isomorphic to Hs''(A(W(n))).

Proof. By the results of [6A] there is an Adams resolution of S with

ESX''(S n~ ) equal to A(2z? - 1) as a differential vector space. Denote this

by (S ) . Let Q ((S ) ) be double loops on the corresponding resolu-

tion for S2n+X . There is a map of resolutions (S2n~1)' -+ il2(S2n+x)' inducing

the inclusion A(2zz - 1) —» A(2n + 1). Apply Proposition 2.20 to this map of

resolutions to obtain a resolution W(n)' of W(n) and compare the long exact

sequence corresponding to the middle row of diagram (2.7) with the long exact

sequence of Proposition 2.20:

-► Hs''A(2n - 1) ̂  Hs'tA(2n + 1) -► Hs'lA(W(n))

-^Hs+x''A(2n-l)^...

and

2  (S      )^E2  (S      )-+E2  (W(n))^E2      (S      )-►•••.

Since d = z; , it follows that Es2''(W(n)') s Hs''(A(W(n))) as bigraded Z/p

vector spaces.   G

Now consider the following result due to Fred Cohen.

Proposition 2.25 [C]. There is a map W(n) -^ Q2pW(n + 1) which is degree

one on the bottom cell. Furthermore the homotopy direct limit of the following

sequence

Win) -?+ n2pW(n + 1) ̂ c Q.4pW(n + 2) — • • •

is Q(M2np-2).

By applying £l2p to the resolution W(n+ I)', we obtain a resolution for

Çl2pW(n + 1), with E2-term Ht(A(2n + 3)/A(2n + 1)), suitably indexed.

Our goal is to produce a map of resolutions

c: W(n) ^Çl2p(W(n + l)')

which induces the isomorphism of Theorem 2.11 in a suitable range of dimen-

sions, and use this to conclude that the map c induces an isomorphism in
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vx -periodic homotopy groups. Unfortunately, since W^zj)' is not an Adams

resolution we do not get c for free. However it turns out that the obstructions

to obtaining c  do indeed vanish.

To see why this is true it is necessary to consider the extent to which properties

(iv) and (v) of Definition 2.16 remain true after looping an Adams resolution

some number of times. This is carried out at all primes in [HM2]. We will defer

the discussion of that analysis as well as the proof of the following proposition

until the end of the section.

Proposition 2.26. Let W(ri)' be the resolution of Proposition 2.24, reindexed so

that X0 = K(Z/p, 2np - 3). Then W(ri)   has the following properties:

(i)

ker{p;: H*Xs(W(n)) - H*Xs+x(W(n))}

= ker{ j\ : H'X(W(n)) - H* W(n)}.

(ii)

jf : HkXs(W(n)) - HkW(n) is surjective for

k < (2np - 3)ps+x + (p - 2)p .

We now construct a map of resolutions.

Theorem 2.27. Let Q. pW(n + I)' denote the minimal resolution (as in Proposi-

tion 2.23) associated to ii2p(W(n + I)'). Then there exists a map of resolutions

c: W(n)' — ii2pW(n + I)' covering the map c: W(n) -► Çï2pW(n + 1).

Proof. Since c is nontrivial in cohomology in the bottom dimension 2zzp - 3,

there is a map c0 making the following diagram commute:

XfW(n)) —^ Xon2p(W(n+l))

/o

W(n)      —c—+     Q2pW(n+l)

Now assume, inductively, that we have a map cs so that the outer rectangle

in the following diagram commutes:

W(n)       —^-+        Q2pW(n + l)      Fs+x(Ç22pW(n + l))

[f.

Xs+x{W(n)) -^  Xs+x(Q2pW(n+l))

XfW(n))    -A-»    Xs(Çl2pW(n + l))

BFs+x(Q2pW(n+l))
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We wish a map cs+x making both the top half rectangle and the bottom half

rectangle commute. Consider the cohomology classes in H*Xs(W(n)) repre-

sented by the map gscs. These classes are in the kernel of ff = (psfs+x)*

by commutativity of the outer rectangle and the fact that gsps is null. Hence

they are in the kernel of p* by Proposition 2.26(i). So there exists a map

cs+x : Xs+x(W(n)) —► Xs+x(Çi pW(n + 1)) making the lower rectangle commute.

The upper rectangle need not commute. The difference cs+xfs+x - fs+xc lifts to

a map d: W(n) —> Fs+x(Çl2pW(n + 1)) which represents cohomology classes in

H*W(n). Now, since Q pW(n +1)   is minimal,

nfFs+x(n2pW(n+l))) = Hs+X'\A(W(n + l))).

By (2.8),

Hs+l '*(A(W(n + l))) = Hs+x'*(A(2(n + \)p - 1) ® A(2(n + l)p + 1)).

So we can use this to estimate the dimension of the highest dimensional coho-

mology class given by d.

A„, ,(2(n+l)p+l) has a basis of admissible monomials zc, zc, --zc,    , where
s+l 'i   h 's+i

k¡ = X¡ or p¡ , i, < (zz + l)p, and ik < pik_x . So the dimension of the largest

such monomial is

(2.28) q(n + l)(p + p2 + ■ ■ -+p+X) + 2np-2.

But f*+x : H*Xs+x(W(n)) -* H*W(n) is surjective through dimensions

(2zip - 3)pi+2 + (p - 2)pî+1

by Proposition 2.26(h), which is larger than the quantity in (2.28), unless p = 3

and n = 1. Hence d extends to map d: Xs+x(W(n)) -» Fs+x(Çl2pW(n + 1)).

So if we define cs+x = cs+x - is+xd, then cs+x will have the properties we seek,

completing the proof of Theorem 2.27 except in the special case of p = 3 and

zz = 1. To treat the case where zz = 1, note that the map W( 1) -* Çl2pW(2) can

be constructed to factor as W(l) -► n352p+1{p} -♦ Çl2pW(2) [C], where the

middle space is the fiber of the pth power map. These maps deloop, see [Se] for

example, so we have BW(l) -» Q2S2p+x{p} — Çl2p~ V(2). Using Proposition

2.20, construct resolutions for each of these spaces and a dimensional analysis

as above shows that the delooped maps are covered by maps of resolutions,   a

Before completing the proof of Theorem 2.2 we state a lemma whose proof

is given at the end of the section.

Lemma 2.29. The map of resolutions c constructed in Theorem 2.27 induces in

E2-terms the map of (2.10).

To complete the proof of Theorem 2.2 let Fn be the fiber of c: W(n) —»

Q pW(n + 1). By Proposition 2.20 we have a resolution (Ff', and by the long

exact sequence of E2-terms, the E2-term of (F )' has a vanishing line of slope
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l/(/>2 - P - 1) • Given a mod p homotopy class a: Mk —► /^ , with filtration

5, the filtration of vxa must be at least s + I, since u, : Affc+<? —► Mk is trivial

in cohomology. For any class a e nt(Fn ; Z/p), v\a has filtration above the

vanishing line for some j, hence must be 0. So vx~xnt(F ; Z/p) = 0 and by

the long exact sequence in homotopy c induces an isomorphism in mod p v ,-

periodic homotopy. It follows by Proposition 2.25 that there is an isomorphism

(2.30) v;XnfW(n);Z/p) = v;lnSt(M2np_3;Z/p).

Now observe that the map

Q2"_1c: Q2n~XW(n) -+ Q(Mqn~l)

is not necessarily the same as the map

wn:Çl2n~XW(n)^Q(Mqn~X)

of (2.1). However the vx-periodic homotopy of the source and target are iso-

morphic. To finish the proof of Theorem 2.2 we must invoke the calculation of

v;l7ist(Mqn~x ; Z/p) given in [Mil].

Theorem 2.31 (Miller [Mil]). Let K denote the graded field Z/p[vx,v~x].

Then vx nt (MQ ; Z/p) is a free K module on four generators in dimensions
-2, -1, -1, 0.

One readily checks that the map wn of (2.1) maps these four generators

nontrivially in mod p homotopy, which gives Theorem 2.2.   D

Now we discuss the proof of Proposition 2.26.

Looping Adams resolutions. The topic of [HM2] is the effect of applying the

functor Q to an Adams resolution for a space X, where X satisfies the

condition that the cohomology of X is a free unstable algebra over the Steenrod

algebra. For a precise characterization of free unstable sf -algebras, see [MPI,

Ba]. Another account of this material can be found in [H]. At an odd prime p ,

S2n+X is such a space so the main theorem of [HM2] is applicable. The result

is

Proposition 2.32 [HM2]. Let X' be an Adams resolution for S2n+X and assume

that k < 2n + 1.
(i) The homomorphism

(rffif1: Hi{Xs(akS2n+l)) -* H\ilkS2n+X)

is surjective if

s+\
i < (2/1 + 1 - k)p       for k odd,

\n + l-k

(ii) ker(nV/ = ker(£i*/g*.

i<(2n + l- k)ps+x + (p- 2)ps   for k even,
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For an unstable sf module M, let QM denote the algebraic loop functor

applied to M, and let U(M) denote the free unstable .af-algebra generated by

M. Suppose R is some unstable ¿/-algebra and suppose in addition that M

is a module over R © sf , the semitensor product ring. Then UR(M) denotes

the free R Qsf -algebra generated by M. See [MPI, 2] for precise definitions

of these notions.

Suppose we have a fibration F —» E —> B which is the pullback, by a map

g : B —► B0, of the path-loop fibration QBQ —► PB0 —► B0, where B0 is a

generalized Eilenberg-Mac Lane space and H*(Bf) = U(Q). A basic prob-

lem has been to compute H*(E) in terms of H*(B) and the map g. Sup-

pose H*(B) = U(Y) for some unstable projective sf module Y and assume

g*(Q) ç Y. Let R = H*(B)/kerp*. Thus H*(E) is an unstable RQsf-
algebra. In [MPI, MP2, Ba] it is proved that

(i) there is a short exact sequence of R©ja/-modules

(2.33) 0-*R^N^M^0

and H*(E)^UR(N).

(ii)R=U(cokerg*\Q).

(iii) A/sJR(g)XQ(kerg*|e).

It is convenient to modify this as follows:

Letting Q' = kerg*\Q, there is an inclusion

IQß' — R ® IQß'.

If G is the submodule of N given by G = ¿_1(ZQ<2'), then there is a short

exact sequence of unstable sf -modules

(2.34) 0-+JR^G^IQC2'-^0.

This is called the fundamental sequence of the fibration (E, p, F). Note that

by tensoring with R, (2.33) can be recovered from (2.34) as in §15 of [MP2].

Suppose {Xf¡ is an Adams resolution of a space X, such that H*(X) =

U(M) for some unstable sf -module M. Let

(2.35) M^P0^PX^P2<-

be a free resolution of M.  Thus each Ps is a free unstable sf -module and

(2.35) is an acyclic chain complex. Suppose {Xs} realizes {PJ},i.e., H*(F) =

U(£ÏPS) and Fs -» Xs -^ BFS+X induces in cohomology the differential

tip»"-* a p..
Now loop the resolution {Xs} k times to obtain a resolution of £lkX in

the sense of Definition 2.14. This will not be an Adams resolution in general;

however this induces a filtration on H*(£l X) given by

As = im{H*(akXs) (ii-Sr H*(QkX)).
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The main theorem of [HM2] relates the associated graded of this filtration to

the homology of the chain complex {QkPs, Qkdf} as long as k is not too large.

More specifically, for the fibration

_Zc _Zr        12 £>„   .       b

QFs-+Q.kXs   ^A1 nxs_x

there is a fundamental sequence

(2.36) 0 - Rstk - Gs k -+ Qker^g^fl^.,^ - 0.

The delicate part of [HM2] is the proof that

(2.37) kerfO*^)*^«-,,, = kerQ^-1^,   Vs > 0.

So (2.36) can be written

0 - *,,*- <?,.*- akerCik+s~xds_x - 0.

Since nkerQ*^"1^, -» Qk+sPs is injective, it follows from (2.37) that

there is a diagram in which the rows and columns are exact:

0 0

1 i
0   -*     im(íikgs)*     -» imSlk+sds — 0

(2.38) i I I
0-*,.*-» öltÄ -        Okern*«-'^,        -0

I I I
0 - üJjik - Gsk/im(Qkgsf -> nkerQ.k+s-xds_x/im£lk+sds -+ 0

Note that it is exactness of the top row which implies exactness of the bottom

row. The inclusion at the left in the bottom row implies that there is an inclusion

of algebras

(2-39) 1 ">*,.*-¿W-

Letting Q'j denote the 7 th derived functor of the iterated algebraic loop functor

n' [Si, Li], the lower right-hand term is identified as QQss+k~xM.

Now let X = S2n+X, k < 2n+l, and let {Xf be the resolution of [6A]. Since

H*(Q.kS2n+x) = limH*(ÇlkXs), Proposition 2.32(h) follows immediately from

(2.39). Using the odd primary version of Singer's sequence (see 4.1 of [Li], 2.3

of [Si]) to compute the connectivity of QQ*+ ~xM, Proposition 2.32(i) follows.

We seek a diagram analogous to (2.38) for W(n)'. The following nota-

tion will be convenient: Let Ps, P's, P" besuchthat H*(Q.3BFs_x(S2n+x)) =

U(P'S), H*(BFS(S2"-1)) = U(P"), and let Ps = P's © P" . We have ds: Ps+X -»

£IPS corresponding to the composite

Fs(W(n)) - Xs(W(n)) h BFs+x(W(n))

and by naturality, a short exact sequence of chain complexes:

(2.40) 0->P"-P, -+P',^0.

The proof of Proposition 2.26 hinges on the following lemma.
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Lemma 2.41.  kerd = kergl p   .
¡ 4    rs+l

Proof. This is equivalent to the statement that im g*\ p    —> imd, is injective.
J     rs+\ i

This follows by a routine diagram chase in the diagram

0

I
n "l ■        J"
0-> img, \p„  -> und

I I
™8s\p,+l ^"K

I I
0-> img's\P<   -* imd'.■i+i

It now follows that there is a diagram

0 0

1 t i
0 ->   img*    -» im^ -»0

1 i I
0- *,  -      G,      -      ßkerrf,,,      -0

i= i i
0^  Rs  ^GJimg* ^Qkerds_x/imds->0

where the middle row is the fundamental sequence of the fibration

Fs(W(n)) -» XfW(n)) P5! Xs_x(W(n))

and all the rows and columns are exact.

Now, as in Proposition 2.32(h), the bottom left inclusion implies an inclusion

1 —► Rs —► R y, which implies Proposition 2.26(i). The connectivity of the

quotient Rs+l//Rs is that of Qkerds_x/imds. To compute this connectivity,

dualize, and consider instead the complexes of unstable injective j^-comodules

corresponding to Sm , where sfm is the dual Steenrod algebra. Following Singer

[Si2], an explicit construction of this complex is obtained from A(m), the result

being denoted by ja^®XmA(w). See [BK] for the odd primary case. Also in

connection with this see [DM2]. Applying sf,®( ) to diagram (2.7) shows that

the connectivity of Hs(P'jP") is that of Cl£lss+XM where M = H*(S2np~x).

Since A(2zz + 1) © A(2zz - 1) is chain equivalent to A(2zz + l)/A(2n - 1), this

is also the connectivity of Hs(Pf and Proposition 2.26(h) follows,   o

Proof of Lemma 2.29. Let P" and P"+x be the chain complexes of free un-

stable sf -modules, as in (2.40), corresponding to W(n) and Sl2pW(n + 1)'

respectively. The map of resolutions c   corresponds to a chain map

(2.42) P"+x - P" .

If F is a generalized Eilenberg-Mac Lane space such that H*(F) = U(P),

we have Hom^(P, Z/p) = nfF). Thus the map of E2-terms induced by c

is obtained by applying Ht(Hom^( , Z/p)) to the chain map in (2.42). We
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will show that in homological degree s+l, P"+x is acyclic in those dimensions

in which Hom^(P"*x, Z/p) ¿ 0. Then Lemma 2.29 follows by the standard

argument of homological algebra concerning the uniqueness up to chain homo-

topy of maps from a projective chain complex to an acyclic chain complex.

Note that this requires a sharpening of the estimate given in the proof of The-

orem 2.27. There we only showed that P" 2 is acyclic in dimensions in which

Hom^(P^x,Z/p)¿0.

To obtain this sharpened estimate, since Q2pW(n + I)' is a minimal resolu-

tion, we need to consider Hs+ '*(A(2(n + l)p + 1)). Order the monomials in

A(2(zz + l)p + 1) lexicographically as in [Ta], and let zc, • • • zc.     be the leading'i        'j+i
term of a cycle in A(2(zz + l)p + 1). We need a lemma.

Lemma 2.43. If zc, • • • zc.     is the leading term of a cycle, then zc, zc,     has the
'l 'i-t-l 's    'j+1

form k¡X j for some j, and i satisfies i > 2pj~x.

Assume Lemma 2.43 for the moment. Write n + 1 uniquely as rpß + k ,

where 1 < r < p-1, and k < pß . Since i, = pj < (n + l)ps+X, we must have

pj < pß+s+x . Suppose pj = pp+s+x . Then the dimension of zc,. •••«:,     is at
M 's+l

most <?(zî + l)(p+p2-l-----l-pi)-l-tfp/'+1+1+2/zp-2. If r > 2 and zz > 2, then

this is less than (2zzp - 3)pi+ + (p - 2)ps, the dimension of the first nonzero

class in HS+X(P").

Now consider the case where r = 1 and suppose first that 5 + 1 > 2. By

Lemma 2.43 we have 2pp+s < i < (n + l)ps, which is impossible. Hence we

must have p1 < p^+s. Thus the dimension of zc   • • • zc      is at most'i        'j+i

q(n + l)(p + ■ • • + p) + qp"+s + 2np-2,

which is less than (2«p - 3)ps+  + (p - 2)ps.

Now, if s+ 1 = 1 , and k: = X, , where pJ = pß+s+x , then the dimension of'i       p

k¡   is qpß+s+ x -l+2np-2. This is less than the dimension of the first nonzero

class in HX(P") if k > 2. If k = 0, 1 then H*(W(n)), and hence H*(P"),

is zero in this dimension. Finally, the special case n = 1 can be handled by the

method given in the proof of Theorem 2.27.   D

Proof of Lemma 2.43. Under the hypothesis of the lemma, zc, zc,     must be the
's     's+1

leading term of a cycle in filtration j = 2 by 2.3, 2.4 of [HM1]. The homology

of A is the stable E2-term of the Adams spectral sequence for the sphere, and

in filtration 5 = 2 this was first computed in [L]. It consists of products h¡h-,

i < j — 2, a0hj, j > 0, elements a0a0 and ax , and Massey products involving

the elements {hf . The element {hf has bidegree (I, qp') and is represented

in A by X ¡. Each of the above elements can be easily represented by a cycle in

A2 ' * in admissible form, and the desired conclusion is obtained by inspecting

the leading terms. The only cycles in A   *(m) which are 0 in A are d(ic) for
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some k = Xj or p. and the leading terms of these satisfy the conclusion as

well.   D

3.   7-HOMOLOGY OF STUNTED LENS SPACES

In this section we recall the basic properties of the spectrum 7, the connec-

tion between 7-homology and vx -periodic homotopy, and the calculation of

the 7-homology of stunted lens spaces. Corollary 1.2 will follow immediately

from this.

Let / denote a wedge summand of the spectrum representing complex con-

nective ./Y-theory, and consider the Adams operation

y/k:/^/,       keZ,

where k is a (p - l)st root of unity mod(p) but not mod(p ). Then we get

(ipk - 1): / — / . This lifts to a map (\pk - 1): / -» XV and 7 is defined as

the fiber of this lifting. J is a connective spectrum with the following homotopy

groups, where v(i) is defined by i = pv{-^s, where p does not divide s :

n0J = Z(p),

(3.1) nqi_xJ = Z/pv(i)+x,        i>0,

nnJ = 0   if zz ̂  0 and zz ̂  1   (mod q).

The image of the classical J homomorphism is mapped isomorphically onto

these groups by the map S —► J . See [D] or [Rl] for more details concerning

the properties of J .

By combining results from [DMM], [R3], and [B] one can prove the following

stable result.

Proposition 3.2. Let X be a p-local spectrum. Then there is an isomorphism

v;XnSt(X;Z/p)^v;XJt(X;Z/p).

A version of this is true for p = 2 as well and this generalizes Theorem 6.2 of

[M1 ] to an arbitrary spectrum X. Since the 7-homology of a spectrum X can

be calculated from the /-homology, this gives a convenient way of computing

the stable vx -periodic homotopy groups of X.

Now we compute 7J,((ßIp)^_1) where iBI. )qnm_x denotes the qn skeleton

of BALp localized at p with the q(m - 1) skeleton pinched to a point. Thus

iB'Lp)q"_x is a space with top cell in dimension qn , and bottom cell in dimen-

sion q m - 1, for 1 < m < n < oo. To simplify notation we will denote this

complex by Bqq"m_x, or just B if zz = oo and m = 1.

To begin, using the methods of [K] for example, one easily calculates the

/-homology of B to obtain

(3.3) /;,_,(£) = Z/p',     /n(B) = 0   ifn£l     (mod q).

In [Rl] it is shown that the fibration

Sab^zVab^ïjab
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induces the following long exact sequence of homotopy groups:

0 - J9i.xiB) - /„._,(*) H fq(l_x)_x(B) -+ Jqi_2(B) - 0

or

0 - Jqi_x(B) - Z/p'' H Z/p'"1 - J.2(B) -, 0.

It follows that

(3.4)
/„_,(*) = Z/p"0»1,     Jqi_2(B) = Z/p"(l),

Jn(B) = 0   ifn^-1,-2   mod«?.

To compute JfBqq"m_x) first look at the cofiber sequence

B -^B^Bqm-\-

The long exact sequence in /-homology gives

fqi-¿Bqm_x) = Z/p'-m+x,        i>m,

(3-5) fqi_x(Bqm) = Z/p',        i<m,

fqi_x(Bqm) = Z/pm,        i>m.

Similarly, we get

(3-6) 4-i(C-.) = Z/^m+1'        '*»•

So the long exact sequence in homotopy groups applied to the fiber sequence

^v.^aVi"iVaVi
looks like

« - Jqi-liPqn-l) "» W™    -    Z/V_" "> WVl) "* 0'

which yields

^-i(^_1) = z/pnün("(i)+1-/-',+1),

(3-?) Jt¡i-2ÍBqn^) = Z/pmini'/{,h-n),

JkiBqn-i) = °   if fc^-1,-2   modi.

Also the long exact sequence in homotopy groups for the fiber sequence

JABq;m_x^fABq;m_x^ZqfABq;m_x

yields for i > n

i3'8) V2(^-.)=Z/^min(i/(,)+1'""m+1).

JkiB7m-i) = Q   ifk±-l,-2   mod«?,
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To compute vxx Jt(Bq" ; Z/p), first recall that for any spectrum X we have

defined nn(X ; Z/p) = [Mn , X] and there is a universal coefficient sequence

0 - nn(X)®Z/p ^nn(X, Z/p) - Tor^LAT), Z/p) - 0.

It follows immediately that

'   Z/p) = Z/p,

Z/p) = Z/p ©Z/p,

Jq¡(B"";Z/p) = Z/p.

To invert vx, let Af denote the mod p Moore spectrum with bottom cell

in dimension zero, and observe that by Spanier-Whitehead duality [Mn , X] =

[S", X A M], and vx is self dual. The Adams maps vx : M —* lTqM acts

on fk(X AM) = nk(/ A X A M ) by taking a map Sk -> / A X A M and

composing with the map f AX AM (/^+ ' / A X A IT9 M. Also the generator

of nq(f), which we have denoted by vx, acts on nk(f aXaM) by taking a map

Sk -» fAXAM, smashing it with S" -» / to get a map Sk+q — /a/aXaM ,

then composing with the ring spectrum multiplication map / Af —► / smashed

with X A M. In [DM] it is proved that these two actions coincide. The latter

action of vx on fffX) coincides on the Adams E2-level to the action of an

element b e Extxf^xQ^(Z/p, Z/p) on Exff^ Q](H* X, Z/p).

So, in JfBqn; Z/p), the vx action on the elements which map nontriv-

ially into ffBqn ; Z/p) can be read off in Ext^ Q )(H*(Bqn)<S)E(Q0), Z/p)

and the vx action of the elements in Jt(Bq" ; Z/p) which are in the image of

<_(,_!)(*'" ; ^IP) can be read off from Ext^^(H* (Bqn) ® E(Q0), Z/p).

The result is

Proposition 3.9. v~x Jf(BY.)qn ; Z/p)   is isomorphic to a free module over

Z/p[vx, v~ ] on four generators in dimensions qn-2, qn - 1, qn - 1, qn.

Combining this with Proposition 3.2 and Theorem 1.1 we get Corollary 1.2.

4. The proof of Theorem 1.3

In order to prove Theorem 1.3 we will need two results. The first result is

known as the odd primary vector field theorem.

Proposition 4.1. (a) There exists a map

n   ■  Kqk~X    * R
ak. o        -»■ Dq(k_v(k)_x)

with the following properties:

(i) ak is nontrivial in mod p homology, and

(ii)  Sqk~ '  ^ Bq{k_v(k)_x) -» Bq(k_u{k)_X) Af  represents a generator of

^qk-\iBq(k-v(k)-\)) "
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(b) There does not exist a map Sqk ' —► B.k_,k)_x,x nontrivial in mod p

homology.

A proof of part (i) can be found in, for example, [D], and is based on the fact

that the Thom complex of the canonical complex line bundle over a skeleton of

WLp is a stunted Bnm . The second part of (a) follows immediately from part

(i). Part (b) is originally due to Toda. An elegant proof can be made using the

Adams operations \p in /-theory, based on the proof of the p = 2 version

given in [MM]. We will only make use of part (a).

The second result concerns the properties of the map P : BY. —► BZ which

is the identity on BZ smashed with the degree p map on the sphere. If we

view BL as a space rather than a spectrum, then P can be defined after just

one suspension, and the following proposition holds true after two suspensions.

Let c: BnqX -» B,+X)q_x denote collapse, i: Bqn —► 5?("+1) denote inclusion.

Proposition 4.2. (a) For n > 1, there exists a map (¡>n : B. +x) _, —► B     x with

the following properties:

(i) </>n extends multiplication by p, i.e.,

B     ,     —?—+    B     ,

(4.3)

"(n+l)q-\ *   *\n+l)?-l

commutes.

(ii) 4>n has positive Adams filtration; i.e., tf>n is 0 in modp homology.

(iii) <f>n induces an isomorphism in K-theory and multiplication by p in

/-theory.

(b) For 1 < m < n, there exists a map

±n .   d<7(/!+1) Rqn

Vm- Dq(m+\)-\        Dqm-\

with the following properties:

(i) The following diagram commutes:

Bqn   ,   —£-*    Bqn   ,
qm-l qm—\

(4.4)

n?(/I+l) C D?(«+l)

Dqm-\ nq(m+l)-\

(ii) tp"m has positive Adams filtration.

(iii) 4>m induces an isomorphism in K-theory.

(iv) <j>n induces an isomorphism in /-theory in dimensions > q(n + 1) - 1

and multiplication by p in dimensions < q(n + 1) - 1.

Proof of Proposition 4.2.  4>n is just the usual extension over the cofiber which

exists because the composite "ALMnnqq_x -4 ~LBnq_x -* ~LBnq_x is null homotopic.
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Properties (ii) and (iii) are readily checked by applying //*(), /f ), and Kf )

to diagram (4.3).

Since the composite YBqq^+_xx] ^ 15^}' A LMq{n+x) is null, there exists a

colifting Z2äJ-i!) ^ ^Km-\ ■ The comP°site

i2Mqm Á z2Ä,(n+!) X iV" , -i» z2ßi("+!)
qm— 1 9//1-I qm-\

is null since i'o/ = p. But i: X2^_¡ -> E2^*,1' is #(zz + 1) - 1 connected

so

foi.ZM     -> Z Bqm_x  -+1 Bqm_x

is null. Thus there exists an extension over the cofiber X ä'^,,, —► X Bqqm_x

and this is our map 4>"m . Again properties (b)(ii)-(iv) are readily checked.

We now prove a stable version of Theorem 1.3. For any space or spectrum

X there is a Hurewicz homomorphism induced by S —► J.

Proposition 4.5. The Hurewicz homomorphism

*qk-\iBnq-\) ~* Jqk-\iBnq-\)

is surjective for all n > 1, k > 1.

Proof. Consider the composite map of spectra

VrV.A^ViA/'

First assume v(k) + l>k-n + l. By (3.5) and (3.7) the second map induces

an isomorphism in homotopy, so it suffices to find an element in nqk_x(Bnq_f)

which maps to a generator of fq^-fB nq_f) • The vector ne^ theorem says there

is a map ak: Sqk~x ^ Bq(k_v(k)_x).

Since n > k-v(k)-l we can compose ak with the collapse map Bq,k_u{k)_x.

-^ B     x to get a map with the desired properties.

Now assume v(k) + 1 < k - n + 1. In this case (3.5) and (3.7) show that the

second map induces multiplication by p*-"-"^' from Z/pv(k)+x to Z/pk~"+x .

So we need an element of xqk-\iBnq_x) which maps to p ~n~vi- ' times the

generator of Sqk-XiBnq_x) ■ We use the composite

^°L0,"^MH-2: Bq{k-v(k))-\^Bqn-\-

Again the vector field theorem gives ak: S —► Bq(k_v{k))_x and the compos-

ite

ó  o • • • o ó,    ...  , o a, :S       —* B     ,

has the right properties since <p¡ induces multiplication by p in /¡-theory.

From this we get another stable result.
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Proposition 4.6. The Hurewicz map ^t-ií^íí+A-i^^-í^íÍ+íf-^ is sur~

jective for all k> l, n > 1 azzri j>0.Ifn>l,j>0 and k > n+j+l+v(k),

then
,s       ,D(n+j)q     n , ,r,(n+i)q

nqk -2V-D(;+1)Î-1^ -* Jqk-2\D(]+\)q-\)

is surjective.

Before giving the proof we state a lemma.

Lemma 4.7.  ^qk-\iBnq_x)  has no elements of Adams filtration greater than

k - n.

Proof of Lemma 4.1. This follows immediately from Theorem 1 of [L] since

H*(Bnq_x) is E(Q0) free.

Proof of Proposition 4.6. Consider the cofiber sequence of spectra

(4-8) BU+l)q-l ~* BU+l)q-l ~* B{n+j+\)q-\ ■

By Proposition 4.5 there is an element a e itqk_l(B,¡+l)    x) of Adams filtra-

tion max(0, k - j - v(k) - 1) which maps to a generator of 7 k_xiB, +1)    ,).

If v(k) < n then a maps to nqk_x(B(n+j+x)q_x) above the vanishing line of

Lemma 4.7; hence a must lift to an element in 7i^k_x(B^(}q_x) as required.

If u(k) > n , then p -a, where b = (k - n - j)- Adams filtration (a), maps

to an element above the vanishing line, hence lifts to yield the desired element.

For the second assertion of Proposition 4.6, consider the boundary map in

the long exact sequence obtained by applying Jt to (4.8). If zc > n+j+v(k)+l,

then this boundary map

"'iZc-l("(zM-./+l)<j-l) ""* ,'qk-2ÍB(j+\)q-\)

is surjective, and since

nqk-liB(n+j+\)q-\) ~^ ^qk-\iB(n+j+\)q-V

is surjective as well by Proposition 4.5, we have that

S       ¡R(n+j)q     \ r (fí(n+j)q     -,
nqk-2^D(j+l)q-l>        J qk-2yD(j+l)q-l>

is surjective.

We are now ready to finish the proof of Theorem 1.3.

Proof of Theorem 1.3. Consider the composite map of spaces Bqn —► Q "   S "

-> Q(Bqn) where the map on the left is the Dyer-Lashof map and the map on

the right is the Hopf-James map. The composite is just the natural inclusion.

The map on the left extends to a map

Q2M+1S2"+V A Q2"+152"+1 -» Q(Bqn).
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Fix qk - 1. By the Freudenthal suspension theorem for the prime p any map

Sqk~x ̂  Q(B^]qq_x) factors through tf^L2"1^^) if

(4.9) 2n + qk< p[2n + (j+l)q]-l.

Furthermore, the stable map

Qi^o.-o^y.QB^^QB9"

induces an isomorphism in Jqk_x() if

(4.10) qk-l>(j + n)q.

Given the integer k , we must find a j which simultaneously satisfies (4.9)

and (4.10). This amounts to finding an integer j such that (k - n)/p - 1 < j <

k - n which we can always do. Thus we apply Proposition 4.6 to get a map

0qk-l        r.2/i+lv2«+l DU+n)q
S        -S2      Z      B{j+X)q_x,

which we then compose with poQ n+ £ "+ (c¡)J+n~ o • • • o <p") to get an element

in n k_x(Q2n+xS2n+x) which maps to a generator of 7qk_x(Bqn), proving the

first part of Theorem 1.3.

To prove the second part consider the composite

~2n+iy2n+l r¡q(n+j) q2/i+1_2/i+1 „qn        02/I+1 Ç2"+1 nHqn

(;'+1)9-1 ^

By Proposition 4.6, there is an element a: Sqk'2 -> Q(B{{"^Jx))q_x) whose

Hurewicz image is a generator if

(4.11) k>n + j+l+v(k).

Consider the diagram

n2/!T2«D                                 d n2«v2»tl „(nil«
"     Z     Ä(»+7 + D<Z-l    -Y   "     Z 5(7 + D?-l

and recall from the proof of Proposition 4.6 that a is obtained as the composite

of the bottom row for some map à. If á has a lifting à then the adjoint of

d o ¿ would yield an element in 7r?A. 2(Q 5 ) which would then map to

the generator of 7gt_2(5i"). But ä will be in the range to have such a lifting

if

(4.12) qk- l+2n<p[2n + (n+j+ l)q - 1]- 1

or equivalently,

(4.13) ^zc<(2p2-2)zz+pi7(; + l)-p.

After a little arithmetic, one sees that given k such that k > I + n + v(k) as

in the hypothesis, it is possible to find a j simultaneously satisfying (4.11) and

(4.13) which completes the proof of the second part of Theorem 1.3.



558 R. D. THOMPSON

Bibliography

[A] J. F. Adams, On the groups J(X). IV, Topology 5 (1966), 21-71.

[B] A. K. Bousfield, The localization of spectra with respect to homology, Topology 18 (1979),

257-281.

[Ba]    W. D. Barcus, On a theorem of Massey and Peterson, Quart. J. Math. 19 (1968), 33-41.

[Be] M. Bendersky, Unstable towers in the odd primary homotopy groups of spheres, Trans. Amer.

Math. Soc. 287 (1985), 529-542.

[BK] A. K. Bousfield and D. M. Kan, The homotopy spectral sequence of a space with coefficients

in a ring, Topology 11 (1972), 79-106.

[6A] A. K. Bousfield, E. B. Curtis, D. M. Kan, D. G. Quillen, D. C. Rector, and J. W. Schlesinger,
The mod p lower central series and the Adams spectral sequence, Topology 5 (1966), 331-

342.

[C] Fred Cohen, The unstable decomposition of il X X and its applications, Math. Z. 182

(1983), 553-568.

[CN] F. Cohen and J. Neisendorfer, A note on desuspending the Adams map, Math. Proc. Cam-

bridge Philos. Soc. 99 (1986), 59-64.

[D] D. Davis, Odd primary bo-resolutions and K-theory localizations, Illinois J. Math. 30 ( 1986),

79-100.

[DM] D. Davis and M. Mahowald, vx and v2 periodicity in stable homotopy theory, Amer. J.

Math. 103(1981), 615-659.

[DM2] _, vx-periodicity in the unstable Adams spectral sequence (to appear).

[DMM] D. Davis, M. Mahowald, and H. Miller, Mapping telescopes and K-theory localization,

Ann. of Math. Stud., no. 113, Princeton Univ. Press, Princeton, N.J., 1987, pp. 152-167.

[Gl] B. Gray, Unstable families related to the image of J , Math. Proc. Cambridge Philos. Soc.

96 (1984), 95-113.

[G2]   _, On the sphere of origin of infinite families in the homotopy groups of spheres, Topology

8(1969), 219-232.

[H]     J. R. Harper, H-spaces with torsion, Mem. Amer. Math. Soc. No. 233 (1979).

[HM1] J. R. Harper and H. R. Miller, On the double suspension homomorphism at odd primes,

Trans. Amer. Math. Soc. 273 (1982), 319-331.

[HM2] _, Looping spaces with cohomology U(M) (to appear).

[K]      R. Kane, Operations in connective K-theory, Mem. Amer. Math. Soc. No. 254 (1981).

[Ku]    N. J. Kuhn, The geometry of James-Hopf maps, Pacific J. Math. 102 (1982), 397-412.

[L]       A. Liulevicius, Zeroes of the cohomology of the Steenrod algebra, Proc. Amer. Math. Soc. 14

(1963), 972-976.
[L2]    _, The factorization of cyclic reduced powers by secondary cohomology operations, Mem.

Amer. Math. Soc. No. 42 (1962).

[Li]     Hu Hsiung Li, The construction of a certain homology of the Steenrod algebra, Soochow J.

Math. 9(1983), 159-165.

[Ml]   Mark Mahowald, The image of J  on the EHP sequence, Ann. of Math. (2) 116 (1982),

65-112.

[M2]   _, On the double suspension homomorphism, Trans. Amer. Math. Soc. 214 (1975), 169—

178.

[Mil] H. R. Miller, On relations between Adams spectral sequences, with an application to the stable

homotopy of a Moore space, J. Pure Appl. Algebra 20 (1981), 287-312.

[Mi2] _, A localization theorem in homological algebra, Math. Proc. Cambridge Philos. Soc. 84

(1978), 73-84.

[MM] M. Mahowald and R. Milgram, Operations which detect S* in connective K-theory, Quart.

J. Math. Oxford Ser. (2) 27 (1976), 415-432.



HOMOTOPY GROUPS OF AN UNSTABLE SPHERE 559

[MPI] W. S. Massey and F. P. Peterson, The cohomology structure of certain fibre spaces. I, Topology

4(1965), 47-65.

[MP2] _, The mod 2 cohomology structure of certain fibre spaces, Mem. Amer. Math. Soc. No.

74 (1967).

[MT] M. Mahowald and R. Thompson, A commentary on 'The image of J in the EHP sequence1,

Seattle Proceedings, 1985, Lecture Notes in Math., vol. 1286, Springer-Verlag, Berlin and

New York.

[Rl]    D. Ravenel, Complex cobordism and the stable homotopy groups of spheres, Academic Press,

New York, 1986.

[R2]    _, Streamlining the EHP sequence by excluding vx-periodicity (to appear).

[R3]    _, Localization with respect to certain periodic homology theories, Amer. J. Math. 106

(1984), 351-414.

[Se]     P. S. Selick, Odd primary torsion in nkS3 , Topology 17 (1978), 407-412.

[Si]     W. M. Singer, Iterated loop functors and the homology of the Steenrod algebra, J. Pure Appl.

Algebrall (1977), 83-101.

[Si2]   _, The algebraic EHP sequence, Trans. Amer. Math. Soc. 201 (1975), 367-382.

[T] H. Toda, On the double suspension E2 , J. Inst. Polytech. Osaka City Univ. 7 (1956), 103-
145.

[Ta]    M. C. Tangora, Computing the homology of the lambda algebra, Mem. Amer. Math. Soc. No.

337(1985).

[W] G. Whitehead, On the homotopy groups of spheres and rotation groups, Ann. of Math. (2) 43

(1942), 634-640.

Department of Mathematics, Northwestern University, Evanston, Illinois 60208


