The $v_ 1$-periodic homotopy groups of an unstable sphere at odd primes
HTML articles powered by AMS MathViewer
- by Robert D. Thompson
- Trans. Amer. Math. Soc. 319 (1990), 535-559
- DOI: https://doi.org/10.1090/S0002-9947-1990-1010890-8
- PDF | Request permission
Abstract:
The $\bmod \;p$ ${v_1}$-periodic homotopy groups of a space $X$ are defined by considering the homotopy classes of maps of a Moore space into $X$ and then inverting the Adams self map. In this paper we compute the $p$ ${v_1}$-periodic homotopy groups of an odd dimensional sphere, localized at an odd prime. This is done by showing that these groups are isomorphic to the stable $\bmod \;p$ ${v_1}$-periodic homotopy groups of $B\Sigma _p^{2(p - 1)n}$, the $2(p - 1)n$ skeleton of the classifying space for the symmetric group ${\Sigma _p}$. There is a map ${\Omega ^{2n + 1}}{S^{2n + 1}} \to {\Omega ^\infty }(J \wedge B\Sigma _p^{2(p - 1)n})$, where $J$ is a spectrum constructed from connective $K$-theory, and the image in homotopy is studied.References
- J. F. Adams, On the groups $J(X)$. IV, Topology 5 (1966), 21β71. MR 198470, DOI 10.1016/0040-9383(66)90004-8
- A. K. Bousfield, The localization of spectra with respect to homology, Topology 18 (1979), no.Β 4, 257β281. MR 551009, DOI 10.1016/0040-9383(79)90018-1
- W. D. Barcus, On a theorem of Massey and Peterson, Quart. J. Math. Oxford Ser. (2) 19 (1968), 33β41. MR 230305, DOI 10.1093/qmath/19.1.33
- Martin Bendersky, Unstable towers in the odd primary homotopy groups of spheres, Trans. Amer. Math. Soc. 287 (1985), no.Β 2, 529β542. MR 768724, DOI 10.1090/S0002-9947-1985-0768724-0
- A. K. Bousfield and D. M. Kan, The homotopy spectral sequence of a space with coefficients in a ring, Topology 11 (1972), 79β106. MR 283801, DOI 10.1016/0040-9383(72)90024-9
- A. K. Bousfield, E. B. Curtis, D. M. Kan, D. G. Quillen, D. L. Rector, and J. W. Schlesinger, The $\textrm {mod}-p$ lower central series and the Adams spectral sequence, Topology 5 (1966), 331β342. MR 199862, DOI 10.1016/0040-9383(66)90024-3
- Frederick R. Cohen, The unstable decomposition of $\Omega ^{2}\Sigma ^{2}X$ and its applications, Math. Z. 182 (1983), no.Β 4, 553β568. MR 701370, DOI 10.1007/BF01215483
- F. R. Cohen and J. A. Neisendorfer, Note on desuspending the Adams map, Math. Proc. Cambridge Philos. Soc. 99 (1986), no.Β 1, 59β64. MR 809498, DOI 10.1017/S0305004100063921
- Donald M. Davis, Odd primary $b\textrm {o}$-resolutions and $K$-theory localization, Illinois J. Math. 30 (1986), no.Β 1, 79β100. MR 822385
- Donald M. Davis and Mark Mahowald, $v_{1}$- and $v_{2}$-periodicity in stable homotopy theory, Amer. J. Math. 103 (1981), no.Β 4, 615β659. MR 623131, DOI 10.2307/2374044 β, ${v_1}$-periodicity in the unstable Adams spectral sequence (to appear).
- Donald M. Davis, Mark Mahowald, and Haynes Miller, Mapping telescopes and $K_*$-localization, Algebraic topology and algebraic $K$-theory (Princeton, N.J., 1983) Ann. of Math. Stud., vol. 113, Princeton Univ. Press, Princeton, NJ, 1987, pp.Β 152β167. MR 921476
- Brayton Gray, Unstable families related to the image of $J$, Math. Proc. Cambridge Philos. Soc. 96 (1984), no.Β 1, 95β113. MR 743705, DOI 10.1017/S0305004100061971
- Brayton Gray, On the sphere of origin of infinite families in the homotopy groups of spheres, Topology 8 (1969), 219β232. MR 245008, DOI 10.1016/0040-9383(69)90012-3
- John R. Harper, $H$-spaces with torsion, Mem. Amer. Math. Soc. 22 (1979), no.Β 223, viii+72. MR 546361, DOI 10.1090/memo/0223
- J. R. Harper and H. R. Miller, On the double suspension homomorphism at odd primes, Trans. Amer. Math. Soc. 273 (1982), no.Β 1, 319β331. MR 664045, DOI 10.1090/S0002-9947-1982-0664045-2 β, Looping spaces with cohomology $U(M)$ (to appear).
- Richard M. Kane, Operations in connective $K$-theory, Mem. Amer. Math. Soc. 34 (1981), no.Β 254, vi+102. MR 634210, DOI 10.1090/memo/0254
- Nicholas J. Kuhn, The geometry of the James-Hopf maps, Pacific J. Math. 102 (1982), no.Β 2, 397β412. MR 686560, DOI 10.2140/pjm.1982.102.397
- Arunas Liulevicius, Zeroes of the cohomology of the Steenrod algebra, Proc. Amer. Math. Soc. 14 (1963), 972β976. MR 157383, DOI 10.1090/S0002-9939-1963-0157383-7
- Arunas Liulevicius, The factorization of cyclic reduced powers by secondary cohomology operations, Mem. Amer. Math. Soc. 42 (1962), 112. MR 182001
- Hu Hsiung Li, The construction of a certain homology of the Steenrod algebra, Soochow J. Math. 9 (1983), 159β165. MR 746753
- Mark Mahowald, The image of $J$ in the $EHP$ sequence, Ann. of Math. (2) 116 (1982), no.Β 1, 65β112. MR 662118, DOI 10.2307/2007048
- Mark Mahowald, On the double suspension homomorphism, Trans. Amer. Math. Soc. 214 (1975), 169β178. MR 438333, DOI 10.1090/S0002-9947-1975-0438333-5
- Haynes R. Miller, On relations between Adams spectral sequences, with an application to the stable homotopy of a Moore space, J. Pure Appl. Algebra 20 (1981), no.Β 3, 287β312. MR 604321, DOI 10.1016/0022-4049(81)90064-5
- Haynes R. Miller, A localization theorem in homological algebra, Math. Proc. Cambridge Philos. Soc. 84 (1978), no.Β 1, 73β84. MR 494105, DOI 10.1017/S0305004100054906
- M. Mahowald and R. James Milgram, Operations which detect Sq4 in connective $K$-theory and their applications, Quart. J. Math. Oxford Ser. (2) 27 (1976), no.Β 108, 415β432. MR 433453, DOI 10.1093/qmath/27.4.415
- W. S. Massey and F. P. Peterson, The cohomology structure of certain fibre spaces. I, Topology 4 (1965), 47β65. MR 189032, DOI 10.1016/0040-9383(65)90048-0 β, The $\bmod 2$ cohomology structure of certain fibre spaces, Mem. Amer. Math. Soc. No. 74 (1967). M. Mahowald and R. Thompson, A commentary on βThe image of $J$ in the $EHP$ sequenceβ, Seattle Proceedings, 1985, Lecture Notes in Math., vol. 1286, Springer-Verlag, Berlin and New York.
- Douglas C. Ravenel, Complex cobordism and stable homotopy groups of spheres, Pure and Applied Mathematics, vol. 121, Academic Press, Inc., Orlando, FL, 1986. MR 860042 β, Streamlining the $EHP$ sequence by excluding ${v_1}$-periodicity (to appear).
- Douglas C. Ravenel, Localization with respect to certain periodic homology theories, Amer. J. Math. 106 (1984), no.Β 2, 351β414. MR 737778, DOI 10.2307/2374308
- Paul Selick, Odd primary torsion in $\pi _{k}(S^{3})$, Topology 17 (1978), no.Β 4, 407β412. MR 516219, DOI 10.1016/0040-9383(78)90007-1
- William M. Singer, Iterated loop functors and the homology of the Steenrod algebra, J. Pure Appl. Algebra 11 (1977/78), no.Β 1-3, 83β101. MR 478155, DOI 10.1016/0022-4049(77)90043-3
- William M. Singer, The algebraic EHP sequence, Trans. Amer. Math. Soc. 201 (1975), 367β382. MR 385861, DOI 10.1090/S0002-9947-1975-0385861-7
- Hirosi Toda, On the double suspension $E^2$, J. Inst. Polytech. Osaka City Univ. Ser. A 7 (1956), 103β145. MR 92968
- Martin C. Tangora, Computing the homology of the lambda algebra, Mem. Amer. Math. Soc. 58 (1985), no.Β 337, v+163. MR 818916, DOI 10.1090/memo/0337
- George W. Whitehead, On the homotopy groups of spheres and rotation groups, Ann. of Math. (2) 43 (1942), 634β640. MR 7107, DOI 10.2307/1968956
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 319 (1990), 535-559
- MSC: Primary 55Q40
- DOI: https://doi.org/10.1090/S0002-9947-1990-1010890-8
- MathSciNet review: 1010890