Local rigidity of symmetric spaces
HTML articles powered by AMS MathViewer
- by V. Schroeder and W. Ziller
- Trans. Amer. Math. Soc. 320 (1990), 145-160
- DOI: https://doi.org/10.1090/S0002-9947-1990-0958901-X
- PDF | Request permission
Abstract:
We show that on a symmetric space of noncompact or compact type the metric is locally rigid in the sense that if one changes the metric locally but preserves the curvature bounds, then the new metric is isometric to the old one. We also prove an analytic continuation property for symmetric spaces of rank $\ge 3$.References
- Werner Ballmann, Mikhael Gromov, and Viktor Schroeder, Manifolds of nonpositive curvature, Progress in Mathematics, vol. 61, Birkhäuser Boston, Inc., Boston, MA, 1985. MR 823981, DOI 10.1007/978-1-4684-9159-3
- Arthur L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10, Springer-Verlag, Berlin, 1987. MR 867684, DOI 10.1007/978-3-540-74311-8 J. Cheeger and D. G. Ebin, Comparison theorems in Riemannian geometry, North-Holland, Amsterdam, 1985.
- Jeff Cheeger and Detlef Gromoll, On the structure of complete manifolds of nonnegative curvature, Ann. of Math. (2) 96 (1972), 413–443. MR 309010, DOI 10.2307/1970819
- J. E. D’Atri and W. Ziller, Naturally reductive metrics and Einstein metrics on compact Lie groups, Mem. Amer. Math. Soc. 18 (1979), no. 215, iii+72. MR 519928, DOI 10.1090/memo/0215
- J.-H. Eschenburg and V. Schroeder, Riemannian manifolds with flat ends, Math. Z. 196 (1987), no. 4, 573–589. MR 917238, DOI 10.1007/BF01160897
- R. E. Greene and H. Wu, Gap theorems for noncompact Riemannian manifolds, Duke Math. J. 49 (1982), no. 3, 731–756. MR 672504
- Herman Gluck, Frank Warner, and Wolfgang Ziller, The geometry of the Hopf fibrations, Enseign. Math. (2) 32 (1986), no. 3-4, 173–198. MR 874686
- Bertram Kostant, On convexity, the Weyl group and the Iwasawa decomposition, Ann. Sci. École Norm. Sup. (4) 6 (1973), 413–455 (1974). MR 364552
- V. A. Toponogov, Evaluation of the length of a closed geodesic on a convex surface, Dokl. Akad. Nauk SSSR 124 (1959), 282–284 (Russian). MR 0102055
- Gerard Walschap, Nonnegatively curved manifolds with souls of codimension $2$, J. Differential Geom. 27 (1988), no. 3, 525–537. MR 940117
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 320 (1990), 145-160
- MSC: Primary 53C35
- DOI: https://doi.org/10.1090/S0002-9947-1990-0958901-X
- MathSciNet review: 958901