## Minimal identities of symmetric matrices

HTML articles powered by AMS MathViewer

- by Wen Xin Ma and Michel L. Racine
- Trans. Amer. Math. Soc.
**320**(1990), 171-192 - DOI: https://doi.org/10.1090/S0002-9947-1990-0961598-6
- PDF | Request permission

## Abstract:

Let ${H_n}(F)$ denote the subspace of symmetric matrices of ${M_n}(F)$, the full matrix algebra with coefficients in a field $F$. The subspace ${H_n}(F)\subset {M_n}(F)$ does not have any polynomial identity of degree less than $2n$. Let \[ T_k^i({x_1}, \ldots ,{x_k}) = \sum \limits _{\begin {array}{*{20}{c}} {\alpha \in {\mathcal {S}_k}} \\ {1 \leq i \leq k,{\sigma ^{ - 1}}(i) \equiv 1,2\operatorname {mod} 4} \\ \end {array} } {{{( - 1)}^\sigma }{x_{\sigma (1)}}} {x_{\sigma (2)}} \cdots {x_{\sigma (k)}},\], and $e(n) = n$ if $n$ is even, $n + 1$ if $n$ is odd. For all $n \geq 1,T_{2n}^i$ is an identity of ${H_n}(F)$. If the characteristic of $F$ does not divide $e(n)!$ and if $n \ne 3$, then any homogeneous polynomial identity of ${H_n}(F)$ of degree $2n$ is a consequence of $T_{2n}^i$. The case $n = 3$ is also dealt with. The proofs are algebraic, but an equivalent formulation of the first result in graph-theoretical terms is given.## References

- A. S. Amitsur and J. Levitzki,
*Minimal identities for algebras*, Proc. Amer. Math. Soc.**1**(1950), 449–463. MR**36751**, DOI 10.1090/S0002-9939-1950-0036751-9 - Claude Berge,
*Graphes et hypergraphes*, Monographies Universitaires de Mathématiques, No. 37, Dunod, Paris, 1970 (French). MR**0357173** - Nathan Jacobson,
*Structure and representations of Jordan algebras*, American Mathematical Society Colloquium Publications, Vol. XXXIX, American Mathematical Society, Providence, R.I., 1968. MR**0251099**, DOI 10.1090/coll/039 - J. Marshall Osborn,
*Identities of non-associative algebras*, Canadian J. Math.**17**(1965), 78–92. MR**179221**, DOI 10.4153/CJM-1965-008-3
Y. P. Razmyslov, - Louis Halle Rowen,
*Polynomial identities in ring theory*, Pure and Applied Mathematics, vol. 84, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. MR**576061**
—, - A. M. Slin′ko,
*Special varieties of Jordan algebras*, Mat. Zametki**26**(1979), no. 3, 337–344, 492 (Russian). MR**549275** - Bruce D. Smith,
*A standard Jordan polynomial*, Comm. Algebra**5**(1977), no. 2, 207–218. MR**430012**, DOI 10.1080/00927877708822165 - Richard G. Swan,
*An application of graph theory to algebra*, Proc. Amer. Math. Soc.**14**(1963), 367–373. MR**149468**, DOI 10.1090/S0002-9939-1963-0149468-6

*Finite basing of the identities of a matrix algebra of second order over a field of characteristic 0*, Algebra i Logika

**12**(1973), 47-63. —,

*Trace identities of full matrix algebras over a field of characteristic zero*, Math. USSR-Izv.

**8**(1974), 727-760.

*A simple proof of Kostant’s theorem and an analogue for the symplectic involution*, Contemp. Math., vol. 13, Amer. Math. Soc., Providence, R.I., 1982, pp. 207-215.

## Bibliographic Information

- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**320**(1990), 171-192 - MSC: Primary 16A38; Secondary 17C05
- DOI: https://doi.org/10.1090/S0002-9947-1990-0961598-6
- MathSciNet review: 961598