Analysis of a class of probability preserving measure algebras on compact intervals
HTML articles powered by AMS MathViewer
- by William C. Connett and Alan L. Schwartz
- Trans. Amer. Math. Soc. 320 (1990), 371-393
- DOI: https://doi.org/10.1090/S0002-9947-1990-0961620-7
- PDF | Request permission
Abstract:
The measure algebras of the title are those which are also hypergroups with some regularity conditions. Examples include the convolutions associated with Jacobi polynomial series and Fourier Bessel series. It is shown here that there is a one-to-one correspondence between these hypergroups and a class of Sturm-Liouville problems which have the characters of the hypergroup as eigenfunctions. The interplay between these two characterizations allows a detailed analysis which includes a Hilb-type formula for the characters and asymptotic estimates for the Plancherel measure and the eigenvalues of the associated Sturm-Liouville problem.References
- Earl A. Coddington and Norman Levinson, Theory of ordinary differential equations, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1955. MR 0069338 W. C. Connett, C. Markett, and A. L. Schwartz, Convolution and hypergroup structures associated with a class of Sturm-Liouville eigenfunction systems, (preprint).
- William C. Connett and Alan L. Schwartz, A multiplier theorem for Jacobi expansions, Studia Math. 52 (1974/75), 243–261. MR 387934, DOI 10.4064/sm-52-3-243-261
- W. C. Connett and A. L. Schwartz, The theory of ultraspherical multipliers, Mem. Amer. Math. Soc. 9 (1977), no. 183, iv+92. MR 435708, DOI 10.1090/memo/0183
- William C. Connett and Alan L. Schwartz, The Littlewood-Paley theory for Jacobi expansions, Trans. Amer. Math. Soc. 251 (1979), 219–234. MR 531976, DOI 10.1090/S0002-9947-1979-0531976-3
- W. C. Connett and A. L. Schwartz, The harmonic machinery for eigenfunction expansions, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978) Proc. Sympos. Pure Math., XXXV, Part, Amer. Math. Soc., Providence, R.I., 1979, pp. 429–434. MR 545335
- W. C. Connett and A. L. Schwartz, Convolution structures for eigenfunction expansions arising from regular Sturm-Liouville problems, Anniversary volume on approximation theory and functional analysis (Oberwolfach, 1983) Internat. Schriftenreihe Numer. Math., vol. 65, Birkhäuser, Basel, 1984, pp. 437–447. MR 820542
- Charles F. Dunkl, The measure algebra of a locally compact hypergroup, Trans. Amer. Math. Soc. 179 (1973), 331–348. MR 320635, DOI 10.1090/S0002-9947-1973-0320635-2
- George Gasper, Banach algebras for Jacobi series and positivity of a kernel, Ann. of Math. (2) 95 (1972), 261–280. MR 310536, DOI 10.2307/1970800
- John E. Gilbert, Maximal theorems for some orthogonal series. II, J. Math. Anal. Appl. 31 (1970), 349–368. MR 419922, DOI 10.1016/0022-247X(70)90030-2
- Herbert Heyer, Probability theory on hypergroups: a survey, Probability measures on groups, VII (Oberwolfach, 1983) Lecture Notes in Math., vol. 1064, Springer, Berlin, 1984, pp. 481–550. MR 772428, DOI 10.1007/BFb0073660
- Robert I. Jewett, Spaces with an abstract convolution of measures, Advances in Math. 18 (1975), no. 1, 1–101. MR 394034, DOI 10.1016/0001-8708(75)90002-X
- B. M. Levitan, Generalized translation operators and some of their applications, Israel Program for Scientific Translations, Jerusalem; Daniel Davey & Co., Inc., 1964. Translated by Z. Lerman; edited by Don Goelman. MR 0172118 G. L. Litvinov, Hypergroups and hypergroups algebras, J. Soviet Math. 38 (1987), 1734-1761.
- Clemens Markett, Product formulas and convolution structure for Fourier-Bessel series, Constr. Approx. 5 (1989), no. 4, 383–404. MR 1014305, DOI 10.1007/BF01889617
- Ernest Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152–182. MR 42109, DOI 10.1090/S0002-9947-1951-0042109-4
- Alan L. Schwartz, Classification of one-dimensional hypergroups, Proc. Amer. Math. Soc. 103 (1988), no. 4, 1073–1081. MR 954986, DOI 10.1090/S0002-9939-1988-0954986-1
- R. Spector, Mesures invariantes sur les hypergroupes, Trans. Amer. Math. Soc. 239 (1978), 147–165 (French, with English summary). MR 463806, DOI 10.1090/S0002-9947-1978-0463806-1 G. Szegà, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, R. I., 1939. E. C. Titchmarsh, Eigenfunction expansions associated with second-order differential equations, Oxford Univ. Press, London, 1969.
- G. N. Watson, A treatise on the theory of Bessel functions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1995. Reprint of the second (1944) edition. MR 1349110
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 320 (1990), 371-393
- MSC: Primary 43A10; Secondary 34B25, 42C05
- DOI: https://doi.org/10.1090/S0002-9947-1990-0961620-7
- MathSciNet review: 961620